158 research outputs found

    Correlations and Counting Statistics of an Atom Laser

    Full text link
    We demonstrate time-resolved counting of single atoms extracted from a weakly interacting Bose-Einstein condensate of 87^{87}Rb atoms. The atoms are detected with a high-finesse optical cavity and single atom transits are identified. An atom laser beam is formed by continuously output coupling atoms from the Bose-Einstein condensate. We investigate the full counting statistics of this beam and measure its second order correlation function g(2)(τ)g^{(2)}(\tau) in a Hanbury Brown and Twiss type experiment. For the monoenergetic atom laser we observe a constant correlation function g(2)(τ)=1.00±0.01g^{(2)}(\tau)=1.00\pm0.01 and an atom number distribution close to a Poissonian statistics. A pseudo-thermal atomic beam shows a bunching behavior and a Bose distributed counting statistics

    Molecules of Fermionic Atoms in an Optical Lattice

    Full text link
    We create molecules from fermionic atoms in a three-dimensional optical lattice using a Feshbach resonance. In the limit of low tunnelling, the individual wells can be regarded as independent three-dimensional harmonic oscillators. The measured binding energies for varying scattering length agree excellently with the theoretical prediction for two interacting atoms in a harmonic oscillator. We demonstrate that the formation of molecules can be used to measure the occupancy of the lattice and perform thermometry.Comment: 4 page
    • …
    corecore