research

Correlations and Counting Statistics of an Atom Laser

Abstract

We demonstrate time-resolved counting of single atoms extracted from a weakly interacting Bose-Einstein condensate of 87^{87}Rb atoms. The atoms are detected with a high-finesse optical cavity and single atom transits are identified. An atom laser beam is formed by continuously output coupling atoms from the Bose-Einstein condensate. We investigate the full counting statistics of this beam and measure its second order correlation function g(2)(τ)g^{(2)}(\tau) in a Hanbury Brown and Twiss type experiment. For the monoenergetic atom laser we observe a constant correlation function g(2)(τ)=1.00±0.01g^{(2)}(\tau)=1.00\pm0.01 and an atom number distribution close to a Poissonian statistics. A pseudo-thermal atomic beam shows a bunching behavior and a Bose distributed counting statistics

    Similar works

    Full text

    thumbnail-image

    Available Versions