332 research outputs found

    The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing

    Full text link
    This paper deals with the computational complexity of conditions which guarantee that the NP-hard problem of finding the sparsest solution to an underdetermined linear system can be solved by efficient algorithms. In the literature, several such conditions have been introduced. The most well-known ones are the mutual coherence, the restricted isometry property (RIP), and the nullspace property (NSP). While evaluating the mutual coherence of a given matrix is easy, it has been suspected for some time that evaluating RIP and NSP is computationally intractable in general. We confirm these conjectures by showing that for a given matrix A and positive integer k, computing the best constants for which the RIP or NSP hold is, in general, NP-hard. These results are based on the fact that determining the spark of a matrix is NP-hard, which is also established in this paper. Furthermore, we also give several complexity statements about problems related to the above concepts.Comment: 13 pages; accepted for publication in IEEE Trans. Inf. Theor

    DOLPHIn - Dictionary Learning for Phase Retrieval

    Get PDF
    We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method

    An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections

    Full text link
    We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum l1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.Comment: 36 pages, 3 figure

    FEI Titan 80-300 TEM

    Get PDF
    The FEI Titan 80-300 TEM is a high-resolution transmission electron microscope equipped with a field emission gun and a corrector for the spherical aberration (CS) of the imaging lens system. The instrument is designed for the investigation of a wide range of solid state phenomena taking place on the atomic scale, which requires true atomic resolution capabilities. Under optimum optical settings of the image CS-corrector (CEOS CETCOR) the point-resolution is extended up to the information limit of well below 100 pm with 200 keV and 300 keV electrons. A special piezo-stage design allows ultra-precise positioning of the specimen in all 3 dimensions. Digital images are acquired with a Gatan 2k x 2k slow-scan charged coupled device camera

    Joint Antenna Selection and Phase-Only Beamforming Using Mixed-Integer Nonlinear Programming

    Full text link
    In this paper, we consider the problem of joint antenna selection and analog beamformer design in downlink single-group multicast networks. Our objective is to reduce the hardware costs by minimizing the number of required phase shifters at the transmitter while fulfilling given distortion limits at the receivers. We formulate the problem as an L0 minimization problem and devise a novel branch-and-cut based algorithm to solve the resulting mixed-integer nonlinear program to optimality. We also propose a suboptimal heuristic algorithm to solve the above problem approximately with a low computational complexity. Computational results illustrate that the solutions produced by the proposed heuristic algorithm are optimal in most cases. The results also indicate that the performance of the optimal methods can be significantly improved by initializing with the result of the suboptimal method.Comment: to be presented at WSA 201
    • …
    corecore