282 research outputs found
A Novel High-Cell-Density Protein Expression System Based on Ralstonia eutropha
We describe the development of a novel protein expression system based on the industrial fermentation organism Ralstonia eutropha (formerly known as Alcaligenes eutrophus) NCIMB 40124. This new system over- comes some of the shortcomings of traditional Escherichia coli-based protein expression systems, particularly the propensity of such systems to form inclusion bodies during high-level expression. Using a proteomics approach, we identified promoters that can be induced by simple process parameters or medium compositions in high-density cell culture or shake flasks, respectively. By combining newly developed molecular biological tools with a high-cell-density fermentation process, we were able to produce high levels (\u3e1 g/liter) of soluble, active organophosphohydrolase, a model enzyme prone to inclusion body formation in E. coli
Antibody-Mediated Targeting of Iron Oxide Nanoparticles to the Folate Receptor Alpha Increases Tumor Cell Association In Vitro and In Vivo
Active molecular targeting has become an important aspect of nanoparticle development for oncology indications. Here, we describe molecular targeting of iron oxide nanoparticles (IONPs) to the folate receptor alpha (FOLRα) using an engineered antibody fragment (Ffab). Compared to control nanoparticles targeting the non-relevant botulinum toxin, the Ffab-IONP constructs selectively accumulated on FOLRα-overexpressing cancer cells in vitro, where they exhibited the capacity to internalize into intracellular vesicles. Similarly, Ffab-IONPs homed to FOLRα-positive tumors upon intraperitoneal administration in an orthotopic murine xenograft model of ovarian cancer, whereas negative control particles showed no detectable tumor accumulation. Interestingly, Ffab-IONPs built with custom 120 nm nanoparticles exhibited lower in vitro targeting efficiency when compared to those built with commercially sourced 180 nm nanoparticles. In vivo, however, the two Ffab-IONP platforms achieved equivalent tumor homing, although the smaller 120 nm IONPs were more prone to liver sequestration. Overall, the results show that Ffab-mediated targeting of IONPs yields specific, high-level accumulation within cancer cells, and this fact suggests that Ffab-IONPs could have future utility in ovarian cancer diagnostics and therapy
Spin excitations and the Fermi surface of superconducting FeS
High-temperature superconductivity occurs near antiferromagnetic
instabilities and nematic state. Debate remains on the origin of nematic order
in FeSe and its relation with superconductivity. Here, we use transport,
neutron scatter- ing and Fermi surface measurements to demonstrate that
hydro-thermo grown superconducting FeS, an isostructure of FeSe, is a
tetragonal paramagnet without nematic order and with a quasiparticle mass
significantly reduced from that of FeSe. Only stripe-type spin excitation is
observed up to 100 meV. No direct coupling between spin excitation and
superconductivity in FeS is found, suggesting that FeS is less correlated and
the nematic order in FeSe is due to competing checkerboard and stripe spin
fluctuations.Comment: 11 pages, 4 page
Single crystal of superconducting SmFeAsO1-xFy grown at high pressure
Single crystals of SmFeAsO1-xFy of a size up to 120 micrometers have been
grown from NaCl/KCl flux at a pressure of 30 kbar and temperature of 1350-1450
C using the cubic anvil high-pressure technique. The superconducting transition
temperature of the obtained single crystals varies between 45 and 53 K.Obtained
crystals are characterized by a full diamagnetic response in low magnetic
fields and by a high critical current density in high magnetic fields.
Structural refinement has been performed on single crystal. Differential
thermal analysis investigations at 1 bar Ar pressure show decomposition of
SmFeAsO1-xFy at 1302 C.Comment: 12 pages, 3 tables, 6 figure
The coherence of autism
There is a growing body of opinion that we should view autism as fractionable into different, largely independent sets of clinical features. The alternative view is that autism is a coherent syndrome in which principal features of the disorder stand in intimate developmental relationship with each other. Studies of congenitally blind children offer support for the latter position and suggest that a source of coherence in autism is restriction in certain forms of perceptually dependent social experience
Disturbed balance of expression between XIAP and Smac/DIABLO during tumour progression in renal cell carcinomas
Dysregulation of apoptosis plays an important role in tumour progression and resistance to chemotherapy. The X-linked inhibitor of apoptosis ( XIAP) is considered to be the most potent caspase inhibitor of all known inhibitor of apoptosis-family members. Only recently, an antagonist of XIAP has been identified, termed Smac/DIABLO. To explore the relevance of antiapoptotic XIAP and proapoptotic Smac/DIABLO for tumour progression in renal cell carcinomas (RCCs), we analysed XIAP and Smac/DIABLO mRNA and protein expression in the primary tumour tissue from 66 RCCs of all major histological types by quantitative real-time PCR, Western blot and ELISA. X-linked inhibitor of apoptosis and Smac/DIABLO mRNA expression was found in all RCCs. Importantly, the relative XIAP mRNA expression levels significantly increased from early (pT1) to advanced (pT3) tumour stages ( P = 0.0002) and also with tumour dedifferentiation ( P = 0.04). Western blot analysis confirmed the tumour stage-dependent increase of XIAP expression on the protein level. In contrast, mRNA and protein expression levels of Smac/DIABLO did not significantly change between early and advanced tumour stages or between low and high tumour grades. Consequently, the mRNA expression ratio between antiapoptotic XIAP and proapoptotic Smac/DIABLO markedly increased during progression from early ( pT1) to advanced ( pT3) tumour stages. Moreover, RCCs confined within the organ capsule ( pT1 and pT2) exhibited a significantly lower XIAP to Smac/DIABLO expression ratio when compared with RCCs infiltrating beyond the kidney ( pT3; P = 0.01). Thus, our investigation demonstrates that the delicate balance between XIAP and Smac/DIABLO expression is gradually disturbed during progression of RCCs, resulting in a relative increase of antiapoptotic XIAP over proapoptotic Smac/DIABLO, thereby probably contributing to the marked apoptosis resistance of RCC.OncologySCI(E)46ARTICLE71349-13579
Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer
Although colon carcinoma cells express Fas receptors, they are resistant to Fas-mediated apoptosis. Defects within the intracellular Fas signal transduction may be responsible. We investigated whether the Fas-associated phosphatase-1 (FAP-1), an inhibitor of Fas signal transduction, contributed to this resistance in colon carcinomas. In vivo, apoptosis of cancer cells was detected in situ using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling ( TUNEL). FAP-1, FasR, and Fas ligand (FasL) were detected using immunohistochemistry. In vitro, colon carcinoma cells were primarily cultured, and their sensitivity to Fas-mediated apoptosis was evaluated by treatment with agonistic anti-FasR CH11 IgM monoclonal antibody in the presence or absence of synthetic Ac-SLV (serine-leucine-valine) tripeptide. Fas-associated phosphatase-1 expression was detected in 20 out of 28 colon adenocarcinomas. In vivo, a positive correlation between the percentage of apoptotic tumour cells and the number of FasL-positive tumour infiltrating lymphocytes was observed in FAP-1 negative cancers, but not in FAP-1-positive ones. Primarily cultured colon cancer cells, which were refractory to CH-11-induced apoptosis, had higher expression of FAP-1 on protein and mRNA levels than the sensitive group. Resistance to Fas-mediated apoptosis in tumour cells could be abolished by Ac-SLV tripetides. Fas-associated phosphatase-1 expression protects colon cancer cells from Fas-mediated apoptosis, and blockade of FAP-1 and FasR interaction sensitises tumour cells to Fas-dependent apoptosis
Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines
The field of tumor vaccination is currently undergoing a shift in focus, from individualized tailor-made vaccines to more generally applicable vaccine formulations. Although primarily predicated by financial and logistic considerations, stemming from a growing awareness that clinical development for wide-scale application can only be achieved through backing from major pharmaceutical companies, these new approaches are also supported by a growing knowledge of the intricacies and minutiae of antigen presentation and effector T-cell activation. Here, the development of whole-cell tumor and dendritic cell (DC)-based vaccines from an individualized autologous set-up to a more widely applicable allogeneic approach will be discussed as reflected by translational studies carried out over the past two decades at our laboratories and clinics in the vrije universiteit medical center (VUmc) in Amsterdam, The Netherlands
- …