144 research outputs found

    Functional Somatic Syndromes: Emerging Biomedical Models and Traditional Chinese Medicine

    Get PDF
    The so-called functional somatic syndromes comprise a group of disorders that are primarily symptom-based, multisystemic in presentation and probably involve alterations in mind-brain-body interactions. The emerging neurobiological models of allostasis/allostatic load and of the emotional motor system show striking similarities with concepts used by Traditional Chinese Medicine (TCM) to understand the functional somatic disorders and their underlying pathogenesis. These models incorporate a macroscopic perspective, accounting for the toll of acute and chronic traumas, physical and emotional stressors and the complex interactions between the mind, brain and body. The convergence of these biomedical models with the ancient paradigm of TCM may provide a new insight into scientifically verifiable diagnostic and therapeutic approaches for these common disorders

    Gut Microbes and the Brain: Paradigm Shift in Neuroscience

    Get PDF
    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject

    Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts.

    Get PDF
    ObjectiveTo compare faecal microbial composition in patients with systemic sclerosis (SSc) from 2 independent cohorts with controls and to determine whether certain genera are associated with SSc-gastrointestinal tract (GIT) symptoms.DesignAdult patients with SSc from the University of California, Los Angeles (UCLA) and Oslo University Hospital (OUH) and healthy controls participated in this study (1:1:1). All participants provided stool specimens for 16S rRNA sequencing. Linear discriminant analysis effect size demonstrated genera with differential expression in SSc. Differential expression analysis for sequence count data identified specific genera associated with GIT symptoms as assessed by the GIT 2.0 questionnaire.ResultsThe UCLA-SSc and OUH-SSc cohorts were similar in age (52.1 and 60.5 years, respectively), disease duration (median (IQR): 6.6 (2.5-16.4) and 7.0 (1.0-19.2) years, respectively), gender distribution (88% and 71%, respectively), and GIT symptoms (mean (SD) total GIT 2.0 scores of 0.7 (0.6) and 0.6 (0.5), respectively). Principal coordinate analysis illustrated significant microbial community differences between SSc and controls (UCLA: p=0.001; OUH: p=0.002). Patients with SSc had significantly lower levels of commensal genera deemed to protect against inflammation, such as Bacteroides (UCLA and OUH), Faecalibacterium (UCLA), Clostridium (OUH); and significantly higher levels of pathobiont genera, such as Fusobacterium (UCLA), compared with controls. Increased abundance of Clostridium was associated with less severe GIT symptoms in both cohorts.ConclusionsThe present analysis detected specific aberrations in the lower GIT microbiota of patients with SSc from 2 geographically and ethnically distinct cohorts. These findings suggest that GIT dysbiosis may be a pathological feature of the SSc disease state

    Patterns of brain structural connectivity differentiate normal weight from overweight subjects

    Get PDF
    AbstractBackgroundAlterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks.AimTo apply a multivariate pattern analysis to distinguish normal weight and overweight subjects based on gray and white-matter measurements.MethodsStructural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, overweight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the overweight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group (females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain measures can distinguish overweight from normal weight individuals.Results1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individuals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in overweight compared to normal weight between the reward network regions and regions of the executive control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber density) was found between ventromedial prefrontal cortex and the anterior insula, and between thalamus and executive control network regions. 2. Gray-matter classification: The classification algorithm, based on 2 signatures with 42 morphological features, achieved 69% accuracy in discriminating overweight from normal weight. In both brain signatures regions of the reward, salience, executive control and emotional arousal networks were associated with lower morphological values in overweight individuals compared to normal weight individuals, while the opposite pattern was seen for regions of the somatosensory network.Conclusions1. An increased BMI (i.e., overweight subjects) is associated with distinct changes in gray-matter and fiber density of the brain. 2. Classification algorithms based on white-matter connectivity involving regions of the reward and associated networks can identify specific targets for mechanistic studies and future drug development aimed at abnormal ingestive behavior and in overweight/obesity

    Treatment of irritable bowel syndrome with diarrhoea using titrated ondansetron (TRITON): study protocol for a randomised controlled trial

    Get PDF
    Background: Irritable bowel syndrome with diarrhoea (IBS-D) affects up to 4% of the general population. Symptoms include frequent, loose, or watery stools with associated urgency, resulting in marked reduction of quality of life and loss of work productivity. Ondansetron, a 5HT3 receptor antagonist, has had an excellent safety record for over 20 years as an antiemetic, yet is not widely used in the treatment of IBS-D. It has, however, been shown to slow colonic transit and in a small randomised, placebo-controlled, cross-over pilot study, benefited patients with IBS-D. Methods: This trial is a phase III, parallel group, randomised, double-blind, multi-centre, placebo-controlled trial, with embedded mechanistic studies. Participants (n = 400) meeting Rome IV criteria for IBS-D will be recruited from outpatient and primary care clinics and by social media to receive either ondansetron (dose titrated up to 24 mg daily) or placebo for 12 weeks. Throughout the trial, participants will record their worst abdominal pain, worst urgency, stool frequency, and stool consistency on a daily basis. The primary endpoint is the proportion of “responders” in each group, using Food and Drug Administration (FDA) recommendations. Secondary endpoints include pain intensity, stool consistency, frequency, and urgency. Mood and quality of life will also be assessed. Mechanistic assessments will include whole gut transit, faecal tryptase and faecal bile acid concentrations at baseline and between weeks 8 and 11. A subgroup of participants will also undergo assessment of sensitivity (n = 80) using the barostat, and/or high-resolution colonic manometry (n = 40) to assess motor patterns in the left colon and the impact of ondansetron. Discussion: The TRITON trial aims to assess the effect of ondansetron across multiple centres. By defining ondansetron’s mechanisms of action we hope to better identify patients with IBS-D who are likely to respond
    • 

    corecore