8 research outputs found

    Phylogenetic patterns of foliar mineral nutrient accumulation among gypsophiles and their relatives in the Chihuahuan Desert

    Get PDF
    PREMISE OF THE STUDY: Gypsum endemism in plants (gypsophily) is common on gypsum outcrops worldwide, but little is known about the functional ecology of Chihuahuan Desert gypsophiles. We investigated whether leaf chemistry of gypsophile lineages from the northern Chihuahuan Desert are similar to leaves of related nonendemic (gypsovag) species relative to their soil chemistry. We expected widely distributed gypsophiles (hypothesized to be older lineages on gypsum) would have distinct leaf chemistry from narrowly distributed, relatively younger lineages endemic to gypsum and gypsovags, reflecting adaptation to gypsum. METHODS: We collected leaves from 23 gypsophiles and related nonendemic taxa growing on nongypsum soils. Soils and leaves were analyzed for Ca, S, Mg, K, N, and P. Leaf gypsum was assessed using Fourier transform infrared spectroscopy. KEY RESULTS: Most widespread gypsophile lineages that are hypothesized to be relatively old accumulate foliar S, Ca, and gypsum, but younger gypsophile lineages and closely related gypsovags do not. Young, narrowly distributed gypsophile lineages have leaf chemical signatures similar to nonendemic congeners and confamilials. CONCLUSIONS: Our data suggest multiple adaptive mechanisms support life on gypsum in Chihuahuan Desert gypsophiles. Most widespread gypsophiles are specialized for life on gypsum, likely due to shared abilities to accumulate and assimilate S and Ca in leaves. In contrast, narrowly distributed gypsophiles may have mechanisms to exclude excess S and Ca from their leaves, preventing toxicity. Future work will investigate the nutrient accumulation and exclusion patterns of other plant organs to determine at what level excess S and Ca uptake is restricted for young-lineage gypsophiles and gypsovags

    Evolution of l-DOPA 4,5-dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales

    Full text link
    The evolution of l-DOPA 4,5-dioxygenase activity, encoded by the gene DODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed that l-DOPA 4,5-dioxygenase activity evolved via a single Caryophyllales-specific neofunctionalisation event within the DODA gene lineage. However, this neofunctionalisation event has not been confirmed and the DODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear. To address this, we functionally characterised 23 distinct DODA proteins for l-DOPA 4,5-dioxygenase activity, from four betalain-pigmented and five anthocyanin-pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updated DODA phylogeny, we then explored the evolution of l-DOPA 4,5-dioxygenase activity. We find that low l-DOPA 4,5-dioxygenase activity is distributed across the DODA gene lineage. In this context, repeated gene duplication events within the DODA gene lineage give rise to polyphyletic occurrences of elevated l-DOPA 4,5-dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro-synteny. In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated l-DOPA 4,5-dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales. Keywords: Caryophyllales; anthocyanins; betalains; convergent evolution; gene duplication; l-DOPA 4, 5-dioxygenase (DODA); metabolic operon; plant pigments; specialised metabolism

    Phylogenetic patterns of foliar mineral nutrient accumulation among gypsophiles and their relatives in the Chihuahuan Desert

    No full text
    PREMISE OF THE STUDY: Gypsum endemism in plants (gypsophily) is common on gypsum outcrops worldwide, but little is known about the functional ecology of Chihuahuan Desert gypsophiles. We investigated whether leaf chemistry of gypsophile lineages from the northern Chihuahuan Desert are similar to leaves of related nonendemic (gypsovag) species relative to their soil chemistry. We expected widely distributed gypsophiles (hypothesized to be older lineages on gypsum) would have distinct leaf chemistry from narrowly distributed, relatively younger lineages endemic to gypsum and gypsovags, reflecting adaptation to gypsum. METHODS: We collected leaves from 23 gypsophiles and related nonendemic taxa growing on nongypsum soils. Soils and leaves were analyzed for Ca, S, Mg, K, N, and P. Leaf gypsum was assessed using Fourier transform infrared spectroscopy. KEY RESULTS: Most widespread gypsophile lineages that are hypothesized to be relatively old accumulate foliar S, Ca, and gypsum, but younger gypsophile lineages and closely related gypsovags do not. Young, narrowly distributed gypsophile lineages have leaf chemical signatures similar to nonendemic congeners and confamilials. CONCLUSIONS: Our data suggest multiple adaptive mechanisms support life on gypsum in Chihuahuan Desert gypsophiles. Most widespread gypsophiles are specialized for life on gypsum, likely due to shared abilities to accumulate and assimilate S and Ca in leaves. In contrast, narrowly distributed gypsophiles may have mechanisms to exclude excess S and Ca from their leaves, preventing toxicity. Future work will investigate the nutrient accumulation and exclusion patterns of other plant organs to determine at what level excess S and Ca uptake is restricted for young-lineage gypsophiles and gypsovags

    Taxonomy and Phylogeny of \u3ci\u3eHelenium scaposum\u3c/i\u3e (Asteraceae, Helenieae, Gaillardiinae)

    No full text
    Phylogenetic analyses, biogeography, morphology, and ecology confirm that Helenium scaposum is a distinct species belonging to genus Helenium. Within Helenium, it appears that H. scaposum is most closely related to members of Helenium sect. Leptopoda. The morphological resemblance of H. scaposum to H. drummondii, H. pinnatifidum, and H. vernale justifies further study to better understand relationships among these species

    NX Trichothecenes Are Required for Fusarium graminearum Infection of Wheat

    No full text
    Fusarium graminearum causes Fusarium head blight (FHB) on wheat and barley and contaminates grains with various mycotoxins that are toxic to humans and animals. Deoxynivalenol (DON), a type B trichothecene, is an essential virulence factor that is required for F. graminearum to spread within a wheat head. Recently, novel type A trichothecenes NX-2 and NX-3 (NX) have been found in F. graminearum. NX trichothecenes lack a keto group at the C8 position. To determine if NX trichothecenes play a role similar to that of DON during F. graminearum infection, deletion mutants of TRI5, the first gene for trichothecene biosynthesis, were generated from strains PH-1, NRRL46422, and NRRL44211 (hereafter 44211) representing the 15-acetyl-DON, 3-acetyl-DON, and NX chemotypes. No trichothecene production was detected in any of the Δtri5 mutants in cultures or inoculated wheat heads. FHB symptoms were restricted to the inoculated wheat spikelets when point-inoculated with the Δtri5 mutants, confirming the necessity of NX and DON for FHB spread. Furthermore, whole-head dip inoculations revealed significant reductions in disease and fungal biomass in wheat heads inoculated with 44211Δtri5 compared with 44211. Introduction of the native 44211 TRI5 and a Trichoderma arundinaceum TRI5 ortholog in the 44211Δtri5 mutant complemented trichothecene production in vitro; however, introducing both TRI5 partially restored wild-type levels of NX in infected heads. Our results demonstrate that NX trichothecenes play an important role in Fusarium graminearum initial infection as well as FHB spread. Thus, TRI5 may serve as an ideal target to control plant infection, FHB spread, and mycotoxin production simultaneously. [Graphic: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license

    The miR156 juvenility factor and PLETHORA 2 form a regulatory network and influence timing of meristem growth and lateral root emergence.

    No full text
    Peer reviewed: TruePlants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network

    Evolution of l-DOPA 4,5-dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales.

    No full text
    The evolution of l-DOPA 4,5-dioxygenase activity, encoded by the gene DODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed that l-DOPA 4,5-dioxygenase activity evolved via a single Caryophyllales-specific neofunctionalisation event within the DODA gene lineage. However, this neofunctionalisation event has not been confirmed and the DODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear. To address this, we functionally characterised 23 distinct DODA proteins for l-DOPA 4,5-dioxygenase activity, from four betalain-pigmented and five anthocyanin-pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updated DODA phylogeny, we then explored the evolution of l-DOPA 4,5-dioxygenase activity. We find that low l-DOPA 4,5-dioxygenase activity is distributed across the DODA gene lineage. In this context, repeated gene duplication events within the DODA gene lineage give rise to polyphyletic occurrences of elevated l-DOPA 4,5-dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro-synteny. In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated l-DOPA 4,5-dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.BBSRC High Value Chemicals from Plant Networ
    corecore