10 research outputs found

    Modeling target-density-based cull strategies to contain foot-and-mouth disease outbreaks

    Get PDF
    Total ring depopulation is sometimes used as a management strategy for emerging infectious diseases in livestock, which raises ethical concerns regarding the potential slaughter of large numbers of healthy animals. We evaluated a farm-density-based ring culling strategy to control foot-and-mouth disease (FMD) in the United Kingdom (UK), which may allow for some farms within rings around infected premises (IPs) to escape depopulation. We simulated this reduced farm density, or “target density”, strategy using a spatially-explicit, stochastic, state-transition algorithm. We modeled FMD spread in four counties in the UK that have different farm demographics, using 740,000 simulations in a full-factorial analysis of epidemic impact measures (i.e., culled animals, culled farms, and epidemic length) and cull strategy parameters (i.e., target farm density, daily farm cull capacity, and cull radius). All of the cull strategy parameters listed above were drivers of epidemic impact. Our simulated target density strategy was usually more effective at combatting FMD compared with traditional total ring depopulation when considering mean culled animals and culled farms and was especially effective when daily farm cull capacity was low. The differences in epidemic impact measures among the counties are likely driven by farm demography, especially differences in cattle and farm density. To prevent over-culling and the associated economic, organizational, ethical, and psychological impacts, the target density strategy may be worth considering in decision-making processes for future control of FMD and other diseases

    Maintaining Vaccine Delivery Following the Introduction of the Rotavirus and Pneumococcal Vaccines in Thailand

    Get PDF
    Although the substantial burdens of rotavirus and pneumococcal disease have motivated many countries to consider introducing the rotavirus vaccine (RV) and heptavalent pneumococcal conjugate vaccine (PCV-7) to their National Immunization Programs (EPIs), these new vaccines could affect the countries' vaccine supply chains (i.e., the series of steps required to get a vaccine from their manufacturers to patients). We developed detailed computational models of the Trang Province, Thailand, vaccine supply chain to simulate introducing various RV and PCV-7 vaccine presentations and their combinations. Our results showed that the volumes of these new vaccines in addition to current routine vaccines could meet and even exceed (1) the refrigerator space at the provincial district and sub-district levels and (2) the transport cold space at district and sub-district levels preventing other vaccines from being available to patients who arrive to be immunized. Besides the smallest RV presentation (17.1 cm3/dose), all other vaccine introduction scenarios required added storage capacity at the provincial level (range: 20 L–1151 L per month) for the three largest formulations, and district level (range: 1 L–124 L per month) across all introduction scenarios. Similarly, with the exception of the two smallest RV presentation (17.1 cm3/dose), added transport capacity was required at both district and sub-district levels. Added transport capacity required across introduction scenarios from the provincial to district levels ranged from 1 L–187 L, and district to sub-district levels ranged from 1 L–13 L per shipment. Finally, only the smallest RV vaccine presentation (17.1 cm3/dose) had no appreciable effect on vaccine availability at sub-districts. All other RV and PCV-7 vaccines were too large for the current supply chain to handle without modifications such as increasing storage or transport capacity. Introducing these new vaccines to Thailand could have dynamic effects on the availability of all vaccines that may not be initially apparent to decision-makers

    Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes.

    Get PDF
    Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries

    Evaluating the value of intrapartum fetal scalp blood sampling to predict adverse neonatal outcomes: A UK multicentre observational study.

    No full text
    ObjectiveTo evaluate the value of fetal scalp blood sampling (FBS) as an adjunct test to cardiotocography, to predict adverse neonatal outcomes.Study designA multicentre service evaluation observational study in forty-four maternity units in the UK. We collected data retrospectively on pregnant women with singleton pregnancy who received FBS in labour using a standardised data collection tool. The primary outcome was prediction of neonatal acidaemia diagnosed as umbilical cord arterial pH < 7.05, the secondary outcomes were the prediction of Apgar scores<7 at 1st and 5th minutes and admission to the neonatal intensive care unit (NICU). We evaluated the correlation between the last FBS blood gas before birth and the umbilical cord blood and adjusted for time intervals. We constructed 2 × 2 tables to calculate the sensitivity, specificity, positive (PPV) and negative predictive value (NPV) and generated receiver operating curves to report on the Area Under the Curve (AUC).ResultsIn total, 1422 samples were included in the analysis; pH values showed no correlation (r = 0.001, p = 0.9) in samples obtained within an hour (n = 314), or within half an hour from birth (n = 115) (r=-0.003, p = 0.9). A suboptimal FBS pH value (<7.25) had a poor sensitivity (22%) and PPV (4.9%) to predict neonatal acidaemia with high specificity (87.3%) and NPV (97.4%). Similar performance was noted to predict Apgar scores <7 at 1st (sensitivity 14.5%, specificity 87.5%, PPV 23.4%, NPV 79.6%) and 5th minute (sensitivity 20.3%, specificity 87.4%, PPV 7.6%, NPV 95.6%), and admission to NICU (sensitivity 20.3%, specificity 87.5%, PPV 13.3%, NPV 92.1%). The AUC for FBS pH to predict neonatal acidaemia was 0.59 (95%CI 0.59–0.68, p = 0.3) with similar performance to predict Apgar scores<7 at 1st minute (AUC 0.55, 95%CI 0.51–0.59, p = 0.004), 5th minute (AUC 0.55, 95%CI 0.48–0.62, p = 0.13), and admission to NICU (AUC 0.58, 95%CI 0.52–0.64, p = 0.002).Forty-one neonates had acidaemia (2.8%, 41/1422) at birth. There was no significant correlation in pH values between the FBS and the umbilical cord blood in this subgroup adjusted for sampling time intervals (r = 0.03, p = 0.83).ConclusionsAs an adjunct tool to cardiotocography, FBS offered limited value to predict neonatal acidaemia, low Apgar Scores and admission to NICU

    Multiple models for outbreak decision support in the face of uncertainty

    Get PDF
    Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020

    Babies in occiput posterior position are significantly more likely to require an emergency cesarean birth compared with babies in occiput transverse position in the second stage of labor: A prospective observational study

    No full text

    Dopamine genes and nicotine dependence in treatment-seeking and community smokers.

    Get PDF
    We utilized a cohort of 828 treatment-seeking self-identified white cigarette smokers (50% female) to rank candidate gene single nucleotide polymorphisms (SNPs) associated with the Fagerström Test for Nicotine Dependence (FTND), a measure of nicotine dependence which assesses quantity of cigarettes smoked and time- and place-dependent characteristics of the respondent's smoking behavior. A total of 1123 SNPs at 55 autosomal candidate genes, nicotinic acetylcholine receptors and genes involved in dopaminergic function, were tested for association to baseline FTND scores adjusted for age, depression, education, sex, and study site. SNP P-values were adjusted for the number of transmission models, the number of SNPs tested per candidate gene, and their intragenic correlation. DRD2, SLC6A3, and NR4A2 SNPs with adjusted P-values &lt;0.10 were considered sufficiently noteworthy to justify further genetic, bioinformatic, and literature analyses. Each independent signal among the top-ranked SNPs accounted for approximately 1% of the FTND variance in this sample. The DRD2 SNP appears to represent a novel association with nicotine dependence. The SLC6A3 SNPs have previously been shown to be associated with SLC6A3 transcription or dopamine transporter density in vitro, in vivo, and ex vivo. Analysis of SLC6A3 and NR4A2 SNPs identified a statistically significant gene-gene interaction (P=0.001), consistent with in vitro evidence that the NR4A2 protein product (NURR1) regulates SLC6A3 transcription. A community cohort of N=175 multiplex ever-smoking pedigrees (N=423 ever smokers) provided nominal evidence for association with the FTND at these top ranked SNPs, uncorrected for multiple comparisons
    corecore