78 research outputs found

    Allosteric Analysis of Glucocorticoid Receptor-DNA Interface Induced by Cyclic Py-Im Polyamide: A Molecular Dynamics Simulation Study

    Get PDF
    Background: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR) for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. Methodology/Principal Findings: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD) dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. Conclusions/Significance: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a.4 A Ėš widening of the DNA minor groove and a compression of the major groove by more than 4A Ėš as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression o

    FGFR3, HRAS, KRAS, NRAS and PIK3CA Mutations in Bladder Cancer and Their Potential as Biomarkers for Surveillance and Therapy

    Get PDF
    Background: Fifty percent of patients with muscle-invasive bladder cancer (MI-BC) die from their disease and current chemotherapy treatment only marginally increases survival. Novel therapies targeting receptor tyrosine kinases or activated oncogenes may improve outcome. Hence, it is necessary to stratify patients based on mutations in relevant oncogenes. Patients with non-muscle-invasive bladder cancer (NMI-BC) have excellent survival, however two-thirds develop recurrences. Tumor specific mutations can be used to detect recurrences in urine assays, presenting a more patient-friendly diagnostic procedure than cystoscopy. Methodology/Principal Findings: To address these issues, we developed a mutation assay for the simultaneous detection of 19 possible mutations in the HRAS, KRAS, and NRAS genes. With this assay and mutation assays for the FGFR3 and PIK3CA oncogenes, we screened primary bladder tumors of 257 patients and 184 recurrences from 54 patients. Additionally, in primary tumors p53 expression was obtained by immunohistochemistry. Of primary tumors 64% were mutant for FGFR3, 11% for RAS, 24% for PIK3CA, and 26% for p53. FGFR3 mutations were mutually exclusive with RAS mutations (p = 0.001) and co-occurred with PIK3CA mutations (p = 0.016). P53 overexpression was mutually exclusive with PIK3CA and FGFR3 mutations (pā‰¤0.029). Mutations in the RAS and PIK3CA genes were not predictors for recurrence-free, progression-free and disease-specific survival. In patients presenting with NMI-BC grade 3 and MI-BC, 33 and 36% of the primary tumors were mutant. In patients with low-grade NMI-BC, 88% of the primary tumors carried a mutation and 88% of the recurrences were mutant. Conclusions/Significance: The mutation assays present a companion diagnostic to define patients for targeted therapies. In addition, the assays are a potential biomarker to detect recurrences during surveillance. We showed that 88% of patients presenting with low-grade NMI-BC are eligible for such a follow-up. This may contribute to a reduction in the number of cystoscopical examinations

    Recurrent and multiple bladder tumors show conserved expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urothelial carcinomas originate from the epithelial cells of the inner lining of the bladder and may appear as single or as multiple synchronous tumors. Patients with urothelial carcinomas frequently show recurrences after treatment making follow-up necessary. The leading hypothesis explaining the origin of meta- and synchronous tumors assumes a monoclonal origin. However, the genetic relationship among consecutive tumors has been shown to be complex in as much as the genetic evolution does not adhere to the chronological appearance of the metachronous tumors. Consequently, genetically less evolved tumors may appear chronologically later than genetically related but more evolved tumors.</p> <p>Methods</p> <p>Forty-nine meta- or synchronous urothelial tumors from 22 patients were analyzed using expression profiling, conventional CGH, LOH, and mutation analyses.</p> <p>Results</p> <p>We show by CGH that partial chromosomal losses in the initial tumors may not be present in the recurring tumors, by LOH that different haplotypes may be lost and that detected regions of LOH may be smaller in recurring tumors, and that mutations present in the initial tumor may not be present in the recurring ones. In contrast we show that despite apparent genomic differences, the recurrent and multiple bladder tumors from the same patients display remarkably similar expression profiles.</p> <p>Conclusion</p> <p>Our findings show that even though the vast majority of the analyzed meta- and synchronous tumors from the same patients are not likely to have originated directly from the preceding tumor they still show remarkably similar expressions profiles. The presented data suggests that an expression profile is established early in tumor development and that this profile is stable and maintained in recurring tumors.</p

    Molecular MRI of Inflammation in Atherosclerosis

    Get PDF
    Inflammatory activity in atherosclerotic plaque is a risk factor for plaque rupture and atherothrombosis and may direct interventional therapy. Inflammatory activity can be evaluated at the (sub)cellular level using in vivo molecular MRI. This paper reviews recent progress in contrast-enhanced molecular MRI to visualize atherosclerotic plaque inflammation. Various MRI contrast agents, among others ultra-small particles of iron oxide, low-molecular-weight Gd-chelates, micelles, liposomes, and perfluorocarbon emulsions, have been used for in vivo visualization of various inflammation-related targets, such as macrophages, oxidized LDL, endothelial cell expression, plaque neovasculature, MMPs, apoptosis, and activated platelets/thrombus. An enzyme-activatable magnetic resonance contrast agent has been developed to study myeloperoxidase activity in inflamed plaques. Agents creating contrast based on the chemical exchange saturation transfer mechanism were used for thrombus imaging. Transfer of these molecular MRI techniques to the clinic will critically depend on the safety profiles of these newly developed magnetic resonance contrast agents

    Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    Get PDF
    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy

    Genetic analysis of multifocal superficial urothelial cancers by array-based comparative genomic hybridisation

    Get PDF
    The purpose of this study was to investigate the accumulation of genetic alterations during metachronous and/or synchronous development of multifocal low-grade superficial urothelial tumours in the same patient, by using array-based comparative genomic hybridisation (array-CGH) and FGFR mutation analysis. We analysed 24 tumours (pTa-1 G1-2) from five patients. We had previously identified a clonal relationship among the tumours of each patient by microsatellite analysis. This time, unsupervised hierarchical cluster analysis revealed that the tumours from each patient were clustered together independently of the tumours from the other patients. All of the tumours from a single patient showed a set of 2ā€“7 identical regional or whole-arm chromosomal changes. In addition, several individual alterations were also found. Cladistic diagrams revealed that the accumulation of genetic alterations could not be explained by a linear model, and the existence of a hypothetical precursor cell was assumed in four patients. In some cases, FGFR mutation seemed to occur later during multifocal tumour development. Taken together, these findings suggest that low-grade superficial urothelial tumours accumulate minor genetic alterations during multifocal development, although these tumours are genetically stable

    Are ipsilateral breast tumour invasive recurrences in young (ā©½40 years) women more aggressive than their primary tumours?

    Get PDF
    The characteristics of ipsilateral breast tumour recurrences (IBTRs) relative to those of their primary tumours (PTs) remain scarcely studied. Of 70 young (ā©½40 years) premenopausal women with IBTRs, we studied a series of 63 with paired histological data. Median follow-up since IBTR was 10 years. Rates of histological types, grades or hormonal receptors were not significantly different in PTs and in IBTRs. The concordance between IBTRs and their PTs was good for histological types. IBTRs with conserved histological types tended to occur more locally, but not significantly sooner than others. These IBTRs had good concordance for hormone receptors. In discordant cases there were as many losses as appearances of the receptors. The concordance was weak for grades, with equivalent numbers of IBTRs graded lower as higher than their PTs. The 10-year overall survival rate was 70%. Neither the conservation of histological type, location, nor of the two combined were associated with deaths. Early (<2 years) IBTRs, tended to be associated with poorer survival (HR=2.24 (0.92ā€“5.41); P=0.08). IBTRs did not display features of higher aggressiveness than PTs. Neither clinical nor histological definition of a true recurrence could be established other than the conservation of the histological type

    Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway is a critical signal transduction pathway that regulates multiple cellular functions. Aberrant activation of this pathway has been identified in a wide range of cancers. Several pathway components including AKT, PI3K and mTOR represent potential therapeutic targets and many small molecule inhibitors are in development or early clinical trials. The complex regulation of the pathway, together with the multiple mechanisms by which it can be activated, make this a highly challenging pathway to target. For successful inhibition, detailed molecular information on individual tumours will be required and it is already clear that different tumour types show distinct combinations of alterations. Recent results have identified alterations in pathway components PIK3CA, PTEN, AKT1 and TSC1 in bladder cancer, some of which are significantly related to tumour phenotype and clinical behaviour. Co-existence of alterations to several PI3K pathway genes in some bladder tumours indicates that these proteins may have functions that are not related solely to the known canonical pathway

    Genomic profiling distinguishes familial multiple and sporadic multiple meningiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meningiomas may occur either as familial tumors in two distinct disorders, familial multiple meningioma and neurofibromatosis 2 (NF2), or sporadically, as either single or multiple tumors in individuals with no family history. Meningiomas in NF2 and approximately 60% of sporadic meningiomas involve inactivation of the <it>NF2 </it>locus, encoding the tumor suppressor merlin on chromosome 22q. This study was undertaken to establish whether genomic profiling could distinguish familial multiple meningiomas from sporadic solitary and sporadic multiple meningiomas.</p> <p>Methods</p> <p>We compared 73 meningiomas presenting as sporadic solitary (64), sporadic multiple (5) and familial multiple (4) tumors using genomic profiling by array comparative genomic hybridization (array CGH).</p> <p>Results</p> <p>Sporadic solitary meningiomas revealed genomic rearrangements consistent with at least two mechanisms of tumor initiation, as unsupervised cluster analysis readily distinguished tumors with chromosome 22 deletion (associated with loss of the <it>NF2 </it>tumor suppressor) from those without chromosome 22 deletion. Whereas sporadic meningiomas without chromosome 22 loss exhibited fewer chromosomal imbalance events overall, tumors with chromosome 22 deletion further clustered into two major groups that largely, though not perfectly, matched with their benign (WHO Grade I) or advanced (WHO Grades II and III) histological grade, with the latter exhibiting a significantly greater degree of genomic imbalance (P < 0.001). Sporadic multiple meningiomas showed a frequency of genomic imbalance events comparable to the atypical grade solitary tumors. By contrast, familial multiple meningiomas displayed no imbalances, supporting a distinct mechanism for the origin for these tumors.</p> <p>Conclusion</p> <p>Genomic profiling can provide an unbiased adjunct to traditional meningioma classification and provides a basis for exploring the different genetic underpinnings of tumor initiation and progression. Most importantly, the striking difference observed between sporadic and familial multiple meningiomas indicates that genomic profiling can provide valuable information for differential diagnosis of subjects with multiple meningiomas and for considering the risk for tumor occurrence in their family members.</p

    Phosphatidylserine targeting for diagnosis and treatment of human diseases

    Get PDF
    Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35Ā kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface
    • ā€¦
    corecore