6 research outputs found

    Band structure of CuMnAs probed by optical and photoemission spectroscopy

    Get PDF
    The tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confirms recent theoretical claim [Phys. Rev. B 96, 094406 (2017)] that copper atoms occupy lattice positions in the basal plane of the tetragonal unit cell

    Laser fabrication of various polymer microoptical components

    No full text
    In this report we present micro/nanostructuring of novel metal isopropoxides-silica containing hybrid sol-gel materials by the femtosecond laser direct writing technique and apply it for the fabrication of various microoptical/nanophotonic components. This approach enables one to photostructure true three-dimensional objects with controlled sub-100 nm spatial definition. Due to self-smoothing effects, surface roughness can be formed below 30 nm making this technique widely applicable for microoptical/nanophotonics devices in visible and near-infra-red wavelengths. After photopolymerization, these materials inherit desired optical properties: high transmittance in the 400–1500 nm spectral range and nearly glass-matching optical refractive index. Doping with organic dyes or quantum dots offers additional functionalities. Fields of applications cover: light guiding, coupling/extraction, trapping, signal processing and transferring, microscopy, biology, etc. In brief, we investigated direct laser writing structurability of these materials and its optimization for manufacturing microoptical/nanophotonic components. We successfully produced microoptical components such as aspheric and Fresnel lenses. We demonstrate the flexibility and reproducibility of this approach to fabricate custom-shaped elements on the tip of the optical fiber, thus producing integrated microoptical devices. The micro/nanostructures were characterized by optical and scanning electron microscopies, and optical profilometry. Their optical functions were measured using a custom-built setup to serve the purpose. The obtained values were in close coincidence to the theoretical values. Further research in the direction of production integrated and multifunctional components to be applied in the fields of photonics, plasmonics and telecommunications as well as optofluidics is currently being carried out

    Management strategies for the treatment and prevention of postoperative/postdischarge nausea and vomiting: an updated review

    No full text

    Magneto-Plasmonic Nanoparticles

    No full text
    corecore