5,989 research outputs found

    Dephasing time in graphene due to interaction with flexural phonons

    Get PDF
    We investigate decoherence of an electron in graphene caused by electron-flexural phonon interaction. We find out that flexural phonons can produce dephasing rate comparable to the electron-electron one. The problem appears to be quite special because there is a large interval of temperature where the dephasing induced by phonons can not be obtain using the golden rule. We evaluate this rate for a wide range of density (nn) and temperature (TT) and determine several asymptotic regions with temperature dependence crossing over from τϕ−1∼T2\tau_{\phi }^{-1}\sim T^{2} to τϕ−1∼T\tau_{\phi}^{-1}\sim T when temperature increases. We also find τϕ−1\tau_{\phi}^{-1} to be a non-monotonous function of nn. These distinctive features of the new contribution can provide an effective way to identify flexural phonons in graphene through the electronic transport by measuring the weak localization corrections in magnetoresistance.Comment: 13 pages, 8 figure

    Structure And Properties of Nanoparticles Formed under Conditions of Wire Electrical Explosion

    Get PDF
    Structure and properties of nanoparticles formed under conditions of wire electrical explosion were studied. It was shown that the state of WEE power particles can be characterized as a metastable state. It leads to an increased stability of nanopowders at normal temperatures and an increased reactivity during heating, which is revealed in the form of threshold phenomena.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Noise thermometry applied to thermoelectric measurements in InAs nanowires

    Full text link
    We apply noise thermometry to characterize charge and thermoelectric transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot noise measurements identify elastic diffusive transport in our NWs with negligible electron-phonon interaction. This enables us to set up a measurement of the diffusion thermopower. Unlike in previous approaches, we make use of a primary electronic noise thermometry to calibrate a thermal bias across the NW. In particular, this enables us to apply a contact heating scheme, which is much more efficient in creating the thermal bias as compared to conventional substrate heating. The measured thermoelectric Seebeck coefficient exhibits strong mesoscopic fluctuations in dependence on the back-gate voltage that is used to tune the NW carrier density. We analyze the transport and thermoelectric data in terms of approximate Mott's thermopower relation and to evaluate a gate-voltage to Fermi energy conversion factor

    Local noise in a diffusive conductor

    Full text link
    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive and extends primary local measurements towards strongly non-equilibrium regimes.Comment: minor revision, accepted in Scientific Report

    Unbiased estimates of galaxy scaling relations from photometric redshift surveys

    Full text link
    Many physical properties of galaxies correlate with one another, and these correlations are often used to constrain galaxy formation models. Such correlations include the color-magnitude relation, the luminosity-size relation, the Fundamental Plane, etc. However, the transformation from observable (e.g. angular size, apparent brightness) to physical quantity (physical size, luminosity), is often distance-dependent. Noise in the distance estimate will lead to biased estimates of these correlations, thus compromising the ability of photometric redshift surveys to constrain galaxy formation models. We describe two methods which can remove this bias. One is a generalization of the V_max method, and the other is a maximum likelihood approach. We illustrate their effectiveness by studying the size-luminosity relation in a mock catalog, although both methods can be applied to other scaling relations as well. We show that if one simply uses photometric redshifts one obtains a biased relation; our methods correct for this bias and recover the true relation

    Biased Brownian motion in extreme corrugated tubes

    Full text link
    Biased Brownian motion of point-size particles in a three-dimensional tube with smoothly varying cross-section is investigated. In the fashion of our recent work [Martens et al., PRE 83,051135] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density are derived. Using this expansion orders we obtain that in the diffusion dominated regime the average particle current equals the zeroth-order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular we demonstrate that this estimate is more accurate for extreme corrugated geometries compared to the common applied method using the spatially dependent diffusion coefficient D(x,f). The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.Comment: 10 pages, 4 figure
    • …
    corecore