537 research outputs found
Informatics Higher Education in Europe: A Data Portal and Case Study
A discussion on the need for coordinated, governed, data-driven computing education initiatives of the future
Dirac fermions in a power-law-correlated random vector potential
We study localization properties of two-dimensional Dirac fermions subject to
a power-law-correlated random vector potential describing, e.g., the effect of
"ripples" in graphene. By using a variety of techniques (low-order perturbation
theory, self-consistent Born approximation, replicas, and supersymmetry) we
make a case for a possible complete localization of all the electronic states
and compute the density of states.Comment: Latex, 4+ page
Observation of dipole-mode vector solitons
We report on the first experimental observation of a novel type of optical
vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically.
We show that these vector solitons can be generated in a photorefractive medium
employing two different processes: a phase imprinting, and a symmetry-breaking
instability of a vortex-mode vector soliton. The experimental results display
remarkable agreement with the theory, and confirm the robust nature of these
radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit
Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas
This article is available open access through the publisher’s website. Copyright @ 2009 The Authors.Background - Clusterin expression in various types of human cancers may be higher or lower than in normal tissue, and clusterin may promote or inhibit apoptosis, cell motility, and inflammation. We investigated the role of clusterin in tumor development in mouse models of neuroblastoma. Methods - We assessed expression of microRNAs in the miR-17-92 cluster by real-time reverse transcription–polymerase chain reaction in MYCN-transfected SH-SY5Y and SH-EP cells and inhibited expression by transfection with microRNA antisense oligonucleotides. Tumor development was studied in mice (n = 66) that were heterozygous or homozygous for the MYCN transgene and/or for the clusterin gene; these mice were from a cross between MYCN-transgenic mice, which develop neuroblastoma, and clusterin-knockout mice. Tumor growth and metastasis were studied in immunodeficient mice that were injected with human neuroblastoma cells that had enhanced (by clusterin transfection, four mice per group) or reduced (by clusterin short hairpin RNA [shRNA] transfection, eight mice per group) clusterin expression. All statistical tests were two-sided. Results - Clusterin expression increased when expression of MYCN-induced miR-17-92 microRNA cluster in SH-SY5Y neuroblastoma cells was inhibited by transfection with antisense oligonucleotides compared with scrambled oligonucleotides. Statistically significantly more neuroblastoma-bearing MYCN-transgenic mice were found in groups with zero or one clusterin allele than in those with two clusterin alleles (eg, 12 tumor-bearing mice in the zero-allele group vs three in the two-allele group, n = 22 mice per group; relative risk for neuroblastoma development = 4.85, 95% confidence interval [CI] = 1.69 to 14.00; P = .005). Five weeks after injection, fewer clusterin-overexpressing LA-N-5 human neuroblastoma cells than control cells were found in mouse liver or bone marrow, but statistically significantly more clusterin shRNA-transfected HTLA230 cells (3.27%, with decreased clusterin expression) than control-transfected cells (1.53%) were found in the bone marrow (difference = 1.74%, 95% CI = 0.24% to 3.24%, P = .026). Conclusions - We report, to our knowledge, the first genetic evidence that clusterin is a tumor and metastasis suppressor gene.Sport Aiding Medical Research for Kids (SPARKS), Great Ormond Street
Hospital/National Health Service, the National
Cancer Institute and University of Parma
Svortices and the fundamental modes of the "snake instability": Possibility of observation in the gaseous Bose-Einstein Condensate
The connection between quantized vortices and dark solitons in a long and
thin, waveguide-like trap geometry is explored in the framework of the
non-linear Schr\"odinger equation. Variation of the transverse confinement
leads from the quasi-1D regime where solitons are stable to 2D (or 3D)
confinement where soliton stripes are subject to a transverse modulational
instability known as the ``snake instability''. We present numerical evidence
of a regime of intermediate confinement where solitons decay into single,
deformed vortices with solitonic properties, also called svortices, rather than
vortex pairs as associated with the ``snake'' metaphor. Further relaxing the
transverse confinement leads to production of 2 and then 3 vortices, which
correlates perfectly with a Bogoliubov-de Gennes stability analysis. The decay
of a stationary dark soliton (or, planar node) into a single svortex is
predicted to be experimentally observable in a 3D harmonically confined dilute
gas Bose-Einstein condensate.Comment: 4 pages, 4 figure
Instabilities of Higher-Order Parametric Solitons. Filamentation versus Coalescence
We investigate stability and dynamics of higher-order solitary waves in
quadratic media, which have a central peak and one or more surrounding rings.
We show existence of two qualitatively different behaviours. For positive phase
mismatch the rings break up into filaments which move radially to initial ring.
For sufficient negative mismatches rings are found to coalesce with central
peak, forming a single oscillating filament.Comment: 5 pages, 7 figure
Induced Coherence and Stable Soliton Spiraling
We develop a theory of soliton spiraling in a bulk nonlinear medium and
reveal a new physical mechanism: periodic power exchange via induced coherence,
which can lead to stable spiraling and the formation of dynamical two-soliton
states. Our theory not only explains earlier observations, but provides a
number of predictions which are also verified experimentally. Finally, we show
theoretically and experimentally that soliton spiraling can be controled by the
degree of mutual initial coherence.Comment: 4 pages, 5 figure
Split Instability of a Vortex in an Attractive Bose-Einstein Condensate
An attractive Bose-Einstein condensate with a vortex splits into two pieces
via the quadrupole dynamical instability, which arises at a weaker strength of
interaction than the monopole and the dipole instabilities. The split pieces
subsequently unite to restore the original vortex or collapse.Comment: 4 pages, 4 figures, added figures and references, revised tex
Watching dark solitons decay into vortex rings in a Bose-Einstein condensate
We have created spatial dark solitons in two-component Bose-Einstein
condensates in which the soliton exists in one of the condensate components and
the soliton nodal plane is filled with the second component. The filled
solitons are stable for hundreds of milliseconds. The filling can be
selectively removed, making the soliton more susceptible to dynamical
instabilities. For a condensate in a spherically symmetric potential, these
instabilities cause the dark soliton to decay into stable vortex rings. We have
imaged the resulting vortex rings.Comment: 4 pages, 4 figure
- …