8 research outputs found

    Role of HOXA7 to HOXA13 and PBX1 genes in various forms of MRKH syndrome (congenital absence of uterus and vagina)

    Get PDF
    The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome refers to the congenital absence or severe hypoplasia of the female genital tract, often described as uterovaginal aplasia which is the prime feature of the syndrome. It is the second cause of primary amenorrhea after gonadal dysgenesis and occurs in ~1 in 4500 women. Aetiology of this syndrome remains poorly understood. Frequent association of other malformations with the MRKH syndrome, involving kidneys, skeleton and ears, suggests the involvement of major developmental genes such as those of the HOX family. Indeed mammalian HOX genes are well known for their crucial role during embryogenesis, particularly in axial skeleton, hindbrain and limb development. More recently, their involvement in organogenesis has been demonstrated notably during urogenital differentiation. Although null mutations of HOX genes in animal models do not lead to MRKH-like phenotypes, dominant mutations in their coding sequences or aberrant expression due to mutated regulatory regions could well account for it. Sequence analysis of coding regions of HOX candidate genes and of PBX1, a likely HOX cofactor during Müllerian duct differentiation and kidney morphogenesis, did not reveal any mutation in patients showing various forms of MRKH syndrome. This tends to show that HOX genes are not involved in MRKH syndrome. However it does not exclude that other mechanisms leading to HOX dysfunction may account for the syndrome

    Orak hücre anemili çocuklarda immün sistem ve sitokinler

    No full text
    TEZ2355Tez (Uzmanlık) -- Çukurova Üniversitesi, Adana, 1997.Kaynakça (s. 65-72) var.72 s. ; 30 cm.

    Author’s reply

    No full text

    Mutations in the Gene Encoding the RER Protein FKBP65 Cause Autosomal-Recessive Osteogenesis Imperfecta

    Get PDF
    Osteogenesis imperfecta is a clinically and genetically heterogeneous brittle bone disorder that results from defects in the synthesis, structure, or posttranslational modification of type I procollagen. Dominant forms of OI result from mutations in COL1A1 or COL1A2, which encode the chains of the type I procollagen heterotrimer. The mildest form of OI typically results from diminished synthesis of structurally normal type I procollagen, whereas moderately severe to lethal forms of OI usually result from structural defects in one of the type I procollagen chains. Recessively inherited OI, usually phenotypically severe, has recently been shown to result from defects in the prolyl-3-hydroxylase complex that lead to the absence of a single 3-hydroxyproline at residue 986 of the α1(I) triple helical domain. We studied a cohort of five consanguineous Turkish families, originating from the Black Sea region of Turkey, with moderately severe recessively inherited OI and identified a novel locus for OI on chromosome 17. In these families, and in a Mexican-American family, homozygosity for mutations in FKBP10, which encodes FKBP65, a chaperone that participates in type I procollagen folding, was identified. Further, we determined that FKBP10 mutations affect type I procollagen secretion. These findings identify a previously unrecognized mechanism in the pathogenesis of OI
    corecore