431 research outputs found

    Fouling and inactivation of titanium dioxide-based photocatalytic systems

    Full text link
    Copyright © 2015 Taylor & Francis Group, LLC. Titanium dioxide is an effective photocatalyst for the breakdown of many environmental contaminants. The complex mixtures that can occur in water matrices can significantly affect the breakdown of the contaminants in water by titanium dioxide (TiO2). The authors discuss a wide variety of foulants and inhibitors of photocatalytic TiO2 systems and review different methods that can be effective for their fouling prevention. Approaches to regenerate a fouled or contaminated TiO2 catalysts are explored and the effect of substrates on immobilized titanium dioxide is also reviewed

    3D-Printed Absorbers for Solar-Driven Interfacial Water Evaporation: A Mini-Review

    Get PDF
    Solar-driven interfacial water evaporation (SWE) is considered as a promising sustainable solution for clean water production especially for remote and off-grid communities. Various approaches have been developed in the last decade to improve the evaporation and thermal efficiency of the system, and to make it more robust for long-term operation. In recent years, 3D printing has emerged as an attractive method to fabricate simple and complex absorber geometries for SWE. In this mini-review, we present the new developments of 3D-printed solar absorbers including the various designs, fabrication strategies, challenges and opportunities. This study hopes to provide more insights into the use of additive manufacturing for improving the absorber design and performance of SWE

    Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application

    Full text link
    © 2015 The Korean Society of Industrial and Engineering Chemistry. The addition of multiwalled carbon nanotubes (MWNTs) as inorganic fillers is well known to improve membrane performance for water desalination. Most MWNTs are treated by acid treatment to enhance their hydrophilicity before their applications in membranes. However, acid treatment leads to structural damages of the MWNT wall. An alternative way of improving the hydrophilicity of MWNTs is through coating of polydopamine (Pdop), where MWNT wall damage is avoided. In the present study, polydopamine-coating on MWNT is carried out at pH 8.5 and at room temperature (23-25. °C). Different concentrations (0.1-0.5 wt%) of Pdop-MWNTs were incorporated into polysulfone (Psf) membranes fabricated by phase inversion. The results showed that the incorporation of Pdop-coated MWNTs has increased the membrane permeability using BSA solution (1000 ppm) by 19-50% depending on the amount of Pdop-MWNTs in the membrane, and has maintained good rejection performances (99.88%). Moreover, the antifouling properties of the nanocomposite membranes were also improved. Here, the optimum dose was determined to be 0.1. wt% of Pdop-MWNTs. Furthermore, even though the Pdop-MWNT/Psf membranes showed lower permeability than acid-MWNT/Psf membrane, the Pdop-MWNT/Psf membrane obtained higher mechanical strength and would be potentially sustainable for a long term ultrafiltration operation

    A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation

    Full text link
    In this study, a bicomponent nanofibrous composite membrane was fabricated by electrospinning and was tested for desalination by direct contact membrane distillation (DCMD). The nanofibrous membrane was composed of a dual-layered structure of poly(vinylidene fluoride-co-hexafluoropropylene) (PH) nanofibers and polyacrylonitrile (PAN) microfibers. Morphological characterization showed slightly beaded cylindrical PH nanofibers with porosity of about 90%. The contact angles of PH and PAN nano/microfibers were 150° and 100°, respectively. The nanofibrous membranes were tested by DCMD and a high water flux of 45 and 30Lm-2h-1 was obtained for distilled water and 35gL-1 NaCl solutions as feed, respectively using DL2 membrane (i.e., 25/75 PH/PAN thickness ratio). The present dual-layer membrane showed better flux performance compared to a commercial flat-sheet membrane. The results suggest the potential of the dual-layer nanofibrous membrane for DCMD applications. © 2014 Elsevier B.V

    Enhancement of nanoscale zero-valent iron immobilization onto electrospun polymeric nanofiber mats for groundwater remediation

    Full text link
    © 2017 Institution of Chemical Engineers A new approach that combines nanoscale zero-valent iron (nZVI) with electrospinning technology has been put forward to avoid nZVI agglomeration and a secondary pollution. In this study, to enhance the immobilization of nZVI particles onto the polyacrylic acid (PAA)/polyvinyl alcohol (PVA) electrospun nanofiber mat, mats (M1, M2 and M3) with different PAA/PVA mass ratios (1:1, 2:1 and 3:1) were tested for the immobilization of nZVI particles and their performance of removing contaminants. The results indicate that M3 immobilized the most nZVI particles (48.4 wt% on the mat, ∼2.5 times the figure for previous study) and had the highest removals to methylene blue and Cu(II) ions at 94% and 83.6% respectively, resulting from more free carboxylic groups available on the cross-linked nanofibers as well as a higher porosity into the mat. Therefore, increasing the PAA/PVA ratio is effective to boost the performance of nZVI–PAA/PVA electrospun nanofiber mat, which has a great potential for the application of nZVI-targeted contaminants remediation

    Stability of Fe-oxide nanoparticles coated with natural organic matter under relevant environmental conditions

    Full text link
    © IWA Publishing 2014 Manufactured nanoparticles (MNPs) are increasingly released into the environment and thus research on their fate and behaviour in complex environmental samples is urgently needed. The fate of MNPs in the aquatic environment will mainly depend on the physico-chemical characteristics of the medium. The presence and concentration of natural organic matter (NOM) will play a significant role on the stability of MNPs by either decreasing or exacerbating the aggregation phenomenon. In this study, we firstly investigated the effect of NOM concentration on the aggregation behaviour of manufactured Fe-oxide nanoparticles. Then, the stability of the coated nanoparticles was assessed under relevant environmental conditions. Flow field-flow fractionation, an emerging method which is gaining popularity in the field of nanotechnology, has been employed and results have been compared to another size-measurement technique to provide increased confidence in the outcomes. Results showed enhanced stability when the nanoparticles are coated with NOM, which was due to electrosteric stabilisation. However, the presence of divalent cations, even at low concentration (i.e. less than 1 mM) was found to induce aggregation of NOM-coated nanoparticles via bridging mechanisms between NOM and Ca2+

    Fouling and its control in membrane distillation-A review

    Full text link
    © 2014 Elsevier B.V. Membrane distillation (MD) is an emerging thermally-driven technology that poses a lot of promise in desalination, and water and wastewater treatment. Developments in membrane design and the use of alternative energy sources have provided much improvement in the viability of MD for different applications. However, fouling of membranes is still one of the major issues that hounds the long-term stability performance of MD. Membrane fouling is the accumulation of unwanted materials on the surface or inside the pores of a membrane that results to a detrimental effect on the overall performance of MD. If not addressed appropriately, it could lead to membrane damage, early membrane replacement or even shutdown of operation. Similar with other membrane separation processes, fouling of MD is still an unresolved problem. Due to differences in membrane structure and design, and operational conditions, the fouling formation mechanism in MD may be different from those of pressure-driven membrane processes. In order to properly address the problem of fouling, there is a need to understand the fouling formation and mechanism happening specifically for MD. This review details the different foulants and fouling mechanisms in the MD process, their possible mitigation and control techniques, and characterization strategies that can be of help in understanding and minimizing the fouling problem

    Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination

    Full text link
    © 2015 Elsevier B.V. Chemical cleaning of membranes is one of the most important strategies in pressurized hollow fiber ultrafiltration (UF) as a pre-treatment for seawater desalination. Various physical cleaning strategies such as backwashing, aeration and air-scrubbing or chemically enhanced backwashing (CEB) have been investigated in order to remove foulants from the UF membrane. However, the limitation in their cleaning effects being found during long-term operation leads to the need of cleaning in place (CIP) for the recovery of membrane performance. In this study, we used oxalic acid and sodium hypochlorite as chemical cleaning agents. The cleaning in series of oxalic acid-sodium hypochlorite-oxalic acid showed the optimal cleaning efficiency and was applied for the consecutive chemical cleaning. The recovery efficiency of the CIP after first, second, third and fourth cleanings was 96.8%, 95.8%, 98.3% and 99.9%, respectively. It was almost fully recovered to the previous recovered value. However, membrane surface structure was deformed by contact with chemical cleaning agents during cleaning time, because, hydrophilic inorganic foulants are still adhered on the membrane surface even after several cleanings although hydrophobic organic foulants were removed easily by chemical cleaning. An improved CIP strategy should be developed to remove hydrophilic foulants for long-term operation of desalination plants
    • …
    corecore