13 research outputs found

    Rosuvastatin Counteracts Vessel Arterialisation and Sinusoid Capillarisation, Reduces Tumour Growth, and Prolongs Survival in Murine Hepatocellular Carcinoma

    Get PDF
    Background and Aims. An arterial blood supply and phenotypic changes of the sinusoids characterise the liver vasculature in human hepatocellular carcinoma (HCC). We investigated the effects of rosuvastatin on liver vessel anomalies, tumour growth and survival in HCC. Methods. We treated transgenic mice developing HCC, characterized by vessel anomalies similar to those of human HCC, with rosuvastatin. Results. In the rosuvastatin group, the survival time was longer (P < .001), and liver weight (P < .01) and nodule surface (P < .01) were reduced. Rosuvastatin decreased the number of smooth muscle actin-positive arteries (P < .05) and prevented the sinusoid anomalies, with decreased laminin expression (P < .001), activated hepatic stellate cells (P < .001), and active Notch4 expression. Furthermore, rosuvastatin inhibited endothelial cell but not tumour hepatocyte functions. Conclusions. Rosuvastatin reduced the vessel anomalies and tumour growth and prolonged survival in HCC. These results represent new mechanisms of the effects of statin on tumour angiogenesis and a potential target therapy in HCC

    Biomarkers in Hepatobiliary Cancers: What Is Useful in Clinical Practice?

    No full text
    International audienceHepatocellular carcinoma (HCC) and biliary tract cancers (BTC) exhibit a poor prognosis with 5-year overall survival rates around 15%, all stages combined. Most of these primary liver malignancies are metastatic at diagnostic, with only limited therapeutic options, relying mainly on systemic therapies. Treatment modalities are different yet partially overlapping between HCC and BTC. The complex molecular profile of BTC yields to several actionable therapeutic targets, contrary to HCC that remains the field of antiangiogenic drugs in non-molecularly selected patients. Immunotherapy is now validated in the first line in HCC in combination with bevacizumab, while clinical activity of single agent immunotherapy appears limited to a subset of patients in BTC, still poorly characterized, and combinations are currently under investigation. In this review, we provide a critical evaluation and grading of clinical relevance on (i) the main prognostic biomarkers in HCC and BTC, (ii) the main theragnostic biomarkers in both tumors, and lastly (iii) what is recommended in clinical practice

    Targeting the Tumor Microenvironment through mTOR Inhibition and Chemotherapy as Induction Therapy for Locally Advanced Head and Neck Squamous Cell Carcinoma: The CAPRA Study

    No full text
    Mammalian target of rapamycin (mTOR) regulates cellular functions by integrating intracellular signals and signals from the tumor microenvironment (TME). The PI3K-AKT-mTOR pathway is activated in 70% of head and neck squamous cell carcinoma (HNSCC) and associated with poor prognosis. This phase I-II study investigated the effect of mTOR inhibition using weekly everolimus (30 mg for dose level 1, 50 mg for dose level 2) combined with weekly induction chemotherapy (AUC2 carboplatin and 60 mg/m2 paclitaxel) in treatment-na&iuml;ve patients with locally advanced T3-4/N0-3 HNSCC. Patients received 9 weekly cycles before chemoradiotherapy. Objectives were safety and antitumor activity along with tissue and blood molecular biomarkers. A total of 50 patients were enrolled. Among 41 evaluable patients treated at the recommended dose of 50 mg everolimus weekly, tolerance was good and overall response rate was 75.6%, including 20 major responses (&ge;50% reduction in tumor size). A significant decrease in expression of p-S6K (p-value: 0.007) and Ki67 (p-value: 0.01) was observed in post-treatment tumor tissue. Pro-immunogenic cytokine release (Th1 cytokines IFN-&gamma;, IL-2, and TNF-&beta;) was observed in the peripheral blood. The combination of everolimus and chemotherapy in HNSCC was safe and achieved major tumor responses. This strategy favorably impacts the TME and might be combined with immunotherapeutic agents

    Periostin- and podoplanin-positive cancer-associated fibroblast subtypes cooperate to shape the inflamed tumor microenvironment in aggressive pancreatic adenocarcinoma

    No full text
    International audienceCancer-associated fibroblasts (CAFs) are orchestrators of the pancreatic ductal adenocarcinoma (PDAC) microenvironment. Previously we described four CAF subtypes with specific molecular and functional features. Here, we have refined our CAF subtype signatures using RNAseq and immunostaining with the goal of defining bioinformatically the phenotypic stromal and tumor epithelial states associated with CAF diversity. We used primary CAF cultures grown from patient PDAC tumors, human data sets (in-house and public, including single-cell analyses), genetically engineered mouse PDAC tissues, and patient-derived xenografts (PDX) grown in mice. We found that CAF subtype RNAseq signatures correlated with immunostaining. Tumors rich in periostin-positive CAFs were significantly associated with shorter overall survival of patients. Periostin-positive CAFs were characterized by high proliferation and protein synthesis rates and low α-smooth muscle actin expression and were found in peri-/pre-tumoral areas. They were associated with highly cellular tumors and with macrophage infiltrates. Podoplanin-positive CAFs were associated with immune-related signatures and recruitment of dendritic cells. Importantly, we showed that the combination of periostin-positive CAFs and podoplanin-positive CAFs was associated with specific tumor microenvironment features in terms of stromal abundance and immune cell infiltrates. Podoplanin-positive CAFs identified an inflammatory CAF (iCAF)-like subset, whereas periostin-positive CAFs were not correlated with the published myofibroblastic CAF (myCAF)/iCAF classification. Taken together, these results suggest that a periostin-positive CAF is an early, activated CAF, associated with aggressive tumors, whereas a podoplanin-positive CAF is associated with an immune-related phenotype. These two subpopulations cooperate to define specific tumor microenvironment and patient prognosis and are of putative interest for future therapeutic stratification of patients

    Netrin-4 Delays Colorectal Cancer Carcinomatosis by Inhibiting Tumor Angiogenesis

    No full text
    A close relationship between tumor angiogenesis, growth, and carcinomatosis has been observed. Netrin-4 (NT-4) has been shown to regulate angiogenic responses. We aimed to examine the effects of NT-4 on colon tumor angiogenesis, growth, and carcinomatosis. We showed that NT-4 was expressed in human colon cancer cells (LS174). A 20-fold increase in NT-4 expression was stably induced by NT-4 pcDNA in LS174 cells. In vivo, a Matrigel angiogenesis assay showed that NT-4 overexpression altered vascular endothelial growth factor (VEGF)/basic fibroblast growth factor–induced angiogenesis. In nude mice with LS174 xenografts, NT-4 overexpression inhibited tumor angiogenesis and growth. In addition, these NT-4-involved inhibitory effects were associated with decreased tumor cell proliferation and increased tumor cell apoptosis. Using an orthotopic peritoneal carcinomatosis model, we demonstrated that NT-4 overexpression decreased colorectal cancer carcinomatosis. Moreover, carcinomatosis-related ascites formation was significantly decreased in mice transplanted with NT-4 LS174 cells versus control LS174 cells. The antiangiogenic activity of NT-4 was probably mediated by binding to its receptor neogenin. Netrin-4 had a direct effect on neither in vitro apoptosis and proliferation of cultured LS174 cells nor the VEGF-induced acute increase in vascular permeability in vivo. We propose that NT-4 overexpression decreases tumor growth and carcinomatosis, probably via an antiangiogenic effect, underlying the potential therapeutic interest in NT-4 in the treatment of colorectal cancer growth and carcinomatosis
    corecore