4 research outputs found

    Differential Surface Engineering Generates Core–Shell Porous Silicon Nanoparticles for Controlled and Targeted Delivery of an Anticancer Drug

    No full text
    An approach to differentially modify the internal surface of porous silicon nanoparticles (pSiNPs) with hydrophobic dodecene and the external surface with antifouling poly-N-(2-hydroxypropyl) acrylamide (polyHPAm) as well as a cell-targeting peptide was developed. Specifically, to generate these core–shell pSiNPs, the interior surface of a porous silicon (pSi) film was hydrosilylated with 1-dodecene, followed by ultrasonication to create pSiNPs. The new external surfaces were modified by silanization with a polymerization initiator, and surface-initiated atom transfer radical polymerization was performed to introduce polyHPAm brushes. Afterward, a fraction of the polymer side chain hydroxyl groups was activated to conjugate cRGDfKa peptide with a high affinity and selectivity for the ανβ3 integrin receptor that is overexpressed in prostate and melanoma cancers. Finally, camptothecin, a hydrophobic anti-cancer drug, was successfully loaded into the pores. This drug delivery system showed excellent colloidal stability in a cell culture medium, and the in vitro drug release kinetics could be fine-tuned by the combination of internal and external surface modifications. In vitro studies by confocal microscopy and flow cytometry revealed improved cellular association attributed to cRGDfK. Furthermore, the cell viability results showed that the drug-loaded and peptide-functionalized nanoparticles had enhanced cytotoxicity toward a C4-2B prostate carcinoma cell line in both 2D cell culture and a 3D spheroid model

    Combination of chemotherapy and mild hyperthermia using targeted nanoparticles: A potential treatment modality for breast cancer

    No full text
    Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine.National Health and Medical Research Council, NHMRC: GNT1112432National Health and Medical Research Council (NHMRC) of Australia [GNT1112432

    ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer

    No full text
    The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. </p
    corecore