66 research outputs found

    Analyse der Immunantwort nach onkologischer Immuntherapie

    Get PDF

    Analyse der Immunantwort nach onkologischer Immuntherapie

    Get PDF

    Dynamic effective elasticity of melanoma cells under shear and elongational flow confirms estimation from force spectroscopy

    Get PDF
    The detection and enrichment of circulating melanoma cells is a challenge, as the cells are very heterogeneous in terms of their biomechanical properties and surface markers. In addition, there is a lack of valid and reliable biomarkers predicting progress and therapeutic response. In this study, we analyze the elasticity of A375 melanoma cells by applying force spectroscopy and a microfluidic method. To identify and eventually separate freely circulating tumor cells, it is crucial to know their physical properties precisely. First, we use standard AFM force spectroscopy, where the elasticity of the cells is calculated from indentation with a pyramidal tip. To extend the limits of the measurements with a tip, we then use cantilevers without a tip to apply force over a larger area of the cells. The resulting Young’s moduli are slightly lower and vary less without the tip, presumably because of the spatial inhomogeneity of the cells. Finally, we implement our microfluidic method: we measure single cell elasticity by analyzing their deformation in high-speed micrographs while passing a stenosis. Combining the force field and the change in shape provides the basis for a stress–strain diagram. The results from the microfluidic deformation analysis were well in accordance with the results from force spectroscopy. The microfluidic method, however, provides advantages over conventional methods, as it is less invasive and less likely to harm the cell during the measurement. The whole cell is measured as one entity without having contact to a stiff substrate, while force spectroscopy is limited to the contact area of the tip, and in some cases dependent of the cell substrate interaction. Consequently, microfluidic deformation analysis allows us to predict the overall elastic behavior of the whole, inhomogeneous cell in three-dimensional force fields. This method may contribute to improve the detection of circulating melanoma cells in the clinical practice

    The Systemic Management of Advanced Melanoma in 2016

    Get PDF
    Melanoma is a common type of skin cancer with a high propensity to metastasize. Tyrosine kinase inhibitors targeting the mitogen-activated protein kinase (MAPK) pathway and immune checkpoint blockade have recently revolutionized the management of unresectable and metastatic disease. However, acquired resistance and primary non-response to therapy require novel treatment strategies and combinations. The purpose of this review is to provide a brief and up-to-date overview on the clinical management and current trial landscape in melanoma. We summarize the most pertinent studies on BRAF/MEK inhibitors and blockade of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Although most agents show robust antitumor efficacy as single agents, further improvements have been achieved by the combination of both approved and developing drugs. We discuss ongoing trials and evaluate future approaches that may provide additional efficacy with less toxicity. (C) 2016 S. Karger GmbH, Freibur

    Clonality of CD4+ Blood T Cells Predicts Longer Survival With CTLA4 or PD-1 Checkpoint Inhibition in Advanced Melanoma

    Get PDF
    Recognition of cancer antigens drives the clonal expansion of cancer-reactive T cells, which is thought to contribute to restricted T-cell receptor (TCR) repertoires in tumor-infiltrating lymphocytes (TILs). To understand how tumors escape anti-tumor immunity, we investigated tumor-associated T-cell repertoires of patients with advanced melanoma and after blockade of the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PD-1). TCR Vβ-gene spectratyping allowed us to quantify restrictions of T-cell repertoires and, further, diversities of T-cell clones. In this study, we show that the blood TCR repertoires were variably restricted in CD4+ and extensively restricted in CD8+ T cells of patients with advanced melanoma, and contained clones in both T-cell fractions prior to the start of immunotherapy. A greater diversification especially of CD4+ blood T-cell clones before immunotherapy showed statistically significant correlations with long-term survival upon CTLA4 or PD-1 inhibition. Analysis of TILs and corresponding blood available in one patient indicated that blood clonality may at least partially be related to the clonal expansion in the tumor microenvironment. In patients who developed severe immune-related adverse events (IrAEs), CD4+ and CD8+ TCR spectratypes became more restricted during anti-CTLA4 treatment, suggesting that newly expanded oligoclonal T-cell responses may contribute to IrAEs. This study reveals diverse T-cell clones in the blood of melanoma patients prior to immunotherapy, which may reflect the extent to which T cells are able to react against melanoma and potentially control melanoma progression. Therefore, the T-cell clonality in the circulation may have predictive value for antitumor responses from checkpoint inhibition

    Hydroxyapatite-coated SPIONs and their influence on cytokine release

    Get PDF
    Hydroxyapatite- or calcium phosphate-coated iron oxide nanoparticles have a high potential for use in many biomedical applications. In this study, a co-precipitation method for the synthesis of hydroxyapatite-coated nanoparticles (SPIONHAp), was used. The produced nanoparticles have been characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, atomic emission spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and energy-dispersive X-ray spectroscopy. The results showed a successful synthesis of 190 nm sized particles and their stable coating, resulting in SPIONHAp. Potential cytotoxic effects of SPIONHAp on EL4, THP-1, and Jurkat cells were tested, showing only a minor effect on cell viability at the highest tested concentration (400 [my]g Fe/mL). The results further showed that hydroxyapatite-coated SPIONs can induce minor TNF-α and IL-6 release by murine macrophages at a concentration of 100 [my]g Fe/mL. To investigate if and how such particles interact with other substances that modulate the immune response, SPIONHAp-treated macrophages were incubated with LPS (lipopolysaccharides) and dexamethasone. We found that cytokine release in response to these potent pro- and anti-inflammatory agents was modulated in the presence of SPIONHAp. Knowledge of this behavior is important for the management of inflammatory processes following in vivo applications of this type of SPIONs

    Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy

    Get PDF
    Purpose: Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: “hot” tumors are infiltrated with T lymphocytes, “cold” tumors are not infiltrated and “immune excluded” tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for “hot” tumors by triggering the immune response of T cells. In order to enable this for cold tumors as well, T cells must be enriched in the tumor. Therefore, we use the principle of magnetic targeting to guide T cells loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate) to the tumor by an externally applied magnetic field. Methods: SPIONCitrate were produced by alkaline coprecipitation of iron(II) and iron(III) chloride and in situ coating with sodium citrate. The concentration-dependent cytocompatibility of the particles was determined by flow cytometry and blood stability assays. Atomic emission spectroscopy was used for the quantification of the particle uptake into T lymphocytes. The attractability of the loaded cells was observed by live-cell imaging in the presence of an externally applied magnetic field. Results: SPIONCitrate displayed good cytocompatibility to T cells and did not show any sign of aggregation in blood. Finally, SPIONCitrate-loaded T cells were strongly attracted by a small external magnet. Conclusion: T cells can be “magnetized” by incorporation of SPIONCitrate for magnetic targeting. The production of the particle-cell hybrid system is straightforward, as the loading process only requires basic laboratory devices and the loading efficiency is sufficient for cells being magnetically controllable. For these reasons, SPIONCitrate are potential suitable candidates for magnetic T cell targeting

    Wirkungen naturwissenschaftlicher Bildungsangebote auf pädagogische Fachkräfte und Kinder

    Get PDF
    Die Autorinnen und Autoren untersuchten die Wirkungen naturwissenschaftlicher Bildungsangebote auf die kognitiven und motivationalen Kompetenzen von pädagogischen Fachkräften und Kindern in Kitas. Insgesamt konnte aufgezeigt werden, dass die Teilnahme an naturwissenschaftlichen Fortbildungen in einem positiven Zusammenhang mit den naturwissenschaftlichen professionellen Kompetenzen pädagogischer Fachkräfte steht und dass Kinder aus Einrichtungen mit einem expliziten naturwissenschaftlichen Schwerpunkt höhere Lernfreude und höheres Selbstvertrauen in Bezug auf Naturwissenschaften zeigen als Kinder in Einrichtungen ohne naturwissenschaftlichen Schwerpunkt. Sie untersuchten zudem die Interaktionsqualität und mögliche sprachliche Bildungswirkungen im Kontext naturwissenschaftlicher Bildungsangebote bei Vorschulkindern. Die Studie legt nahe, dass naturwissenschaftliche Fortbildungen die naturwissenschaftlichen Kompetenzen wie auch den Spracherwerb der Kinder unterstützen und die Prozessqualität der Fachkräfte in naturwissenschaftsbezogenen Situationen bestimmen können. Das Schlusskapitel des Bandes beschreibt die Umsetzung der wissenschaftlichen Empfehlungen in den inhaltlichen Angeboten der Stiftung „Haus der kleinen Forscher“ und ihrer fachlichen Weiterentwicklung. (DIPF/Orig.

    A Cell-Permeable Inhibitor to Trap Gαq Proteins in the Empty Pocket Conformation

    Get PDF
    In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be “frozen” pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors
    • …
    corecore