6 research outputs found

    Maintenance of Airway Epithelium in Acutely Rejected Orthotopic Vascularized Mouse Lung Transplants

    No full text
    Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts

    Cutting edge: acute lung allograft rejection is independent of secondary lymphoid organs

    No full text
    It is the prevailing view that adaptive immune responses are initiated in secondary lymphoid organs. Studies using alymphoplastic mice have shown that secondary lymphoid organs are essential to initiate allograft rejection of skin, heart, and small bowel. The high immunogenicity of lungs is well recognized and allograft rejection remains a major contributing factor to poor outcomes after lung transplantation. We show in this study that alloreactive T cells are initially primed within lung allografts and not in secondary lymphoid organs following transplantation. In contrast to other organs, lungs are acutely rejected in the absence of secondary lymphoid organs. Two-photon microscopy revealed that recipient T cells cluster predominantly around lung-resident, donor-derived CD11c+ cells early after engraftment. These findings demonstrate for the first time that alloimmune responses following lung transplantation are initiated in the graft itself and therefore identify a novel, potentially clinically relevant mechanism of lung allograft rejection
    corecore