116 research outputs found

    Milk cholesterol concentration in mice is not affected by high cholesterol diet- or genetically-induced hypercholesterolaemia

    Get PDF
    Breast milk cholesterol content may imply to affect short- and long-term cholesterol homeostasis in the offspring. However, mechanisms of regulating milk cholesterol concentration are only partly understood. We used different mouse models to assess the impact of high cholesterol diet (HC)- or genetically-induced hypercholesterolaemia on milk cholesterol content. At day 14 postpartum we determined milk, plasma and tissue lipids in wild type (WT), LDL receptor knockout (Ldlr-/-), and ATP-binding cassette transporter G8 knockout (Abcg8-/-) mice fed either low- or 0.5% HC diet. In chow-fed mice, plasma cholesterol was higher in Ldlr-/- dams compared to WT. HC-feeding increased plasma cholesterol in all three models compared to chow diet. Despite the up to 5-fold change in plasma cholesterol concentration, the genetic and dietary conditions did not affect milk cholesterol levels. To detect possible compensatory changes, we quantified de novo cholesterol synthesis in mammary gland and liver, which was strongly reduced in the various hypercholesterolaemic conditions. Together, these data suggest that milk cholesterol concentration in mice is not affected by conditions of maternal hypercholesterolaemia and is maintained at stable levels via ABCG8- and LDLR-independent mechanisms. The robustness of milk cholesterol levels might indicate an important physiological function of cholesterol supply to the offspring

    Statin use and incident cardiovascular events in renal transplant recipients

    Get PDF
    BACKGROUND: Statins achieve potent LDL lowering in the general population leading to a significant cardiovascular (CV) risk reduction. In renal transplant recipients (RTR) statins are included in treatment guidelines, however, conclusive evidence of improved cardiovascular outcomes has not been uniformly provided and concerns have been raised about simultaneous use of statins and the immunosuppressant cyclosporine. This study aimed to elucidate the effect of statins on a compound CV endpoint, comprised of ischaemic CV events and CV mortality in RTR, with subgroup analysis focussing on cyclosporine users. METHOD: 622 included RTR (follow‐up 5.4 years) were matched based on propensity scores and dichotomized by statin use. Survival analysis was conducted. RESULTS: Cox regression showed that statin use was not significantly associated with the compound CV endpoint in a fully adjusted model (HR = 0.81, 95% CI = 0.53‐1.24, P = .33). Subgroup analyses in RTR using cyclosporine revealed a strong positive association of statin use with the CV compound outcome in a fully adjusted model (HR = 6.60, 95% CI 1.75‐24.9, P = .005). Furthermore, statin use was positively correlated with cyclosporine trough levels (correlation coefficient 0.11, P = .04). CONCLUSION: In conclusion, statin use does not significantly decrease incident CV events in an overall RTR cohort, but is independently associated with CV‐specific mortality and events in cyclosporine using RTR, possibly due to a bilateral pharmacological interaction

    Remnant lipoprotein cholesterol is associated with incident new onset diabetes after transplantation (NODAT) in renal transplant recipients:results of the TransplantLines Biobank and cohort Studies

    Get PDF
    BACKGROUND: New onset diabetes after transplantation (NODAT) is a frequent and serious complication of renal transplantation resulting in worse graft and patient outcomes. The pathophysiology of NODAT is incompletely understood, and no prospective biomarkers have been established to predict NODAT risk in renal transplant recipients (RTR). The present work aimed to determine whether remnant lipoprotein (RLP) cholesterol could serve as such a biomarker that would also provide a novel target for therapeutic intervention. METHODS: This longitudinal cohort study included 480 RTR free of diabetes at baseline. 53 patients (11%) were diagnosed with NODAT during a median [interquartile range, IQR] follow-up of 5.2 [4.1–5.8] years. RLP cholesterol was calculated by subtracting HDL and LDL cholesterol from total cholesterol values (all directly measured). RESULTS: Baseline remnant cholesterol values were significantly higher in RTR who subsequently developed NODAT (0.9 [0.5–1.2] mmol/L vs. 0.6 [0.4–0.9] mmol/L, p = 0.001). Kaplan-Meier analysis showed that higher RLP cholesterol values were associated with an increased risk of incident NODAT (log rank test, p < 0.001). Cox regression demonstrated a significant longitudinal association between baseline RLP cholesterol levels and NODAT (HR, 2.27 [1.64–3.14] per 1 SD increase, p < 0.001) that remained after adjusting for plasma glucose and HbA1c (p = 0.002), HDL and LDL cholesterol (p = 0.008) and use of immunosuppressive medication (p < 0.001), among others. Adding baseline remnant cholesterol to the Framingham Diabetes Risk Score significantly improved NODAT prediction (change in C-statistic, p = 0.01). CONCLUSIONS: This study demonstrates that baseline RLP cholesterol levels strongly associate with incident NODAT independent of several other recognized risk factors

    Epinephrine in the heart: uptake and release, but no facilitation of norepinephrine release

    Get PDF
    BACKGROUND: Several studies have suggested that epinephrine augments the release of norepinephrine from sympathetic nerve terminals through stimulation of presynaptic receptors, but evidence pertaining to this mechanism in the heart is scarce and conflicting. Using the microdialysis technique in the porcine heart, we investigated whether epinephrine, taken up by and released from cardiac sympathetic nerves, can increase norepinephrine concentrations in myocardial interstitial fluid (NE(MIF)) under basal conditions and during sympathetic activation. METHODS AND RESULTS: During intracoronary epinephrine infusion of 10, 50, and 100 ng/kg per minute under basal conditions, large increments in interstitial (from 0.31+/-0.05 up to 140+/-30 nmol/L) and coronary venous (from 0.16+/-0.08 up to 228+/-39 nmol/L) epinephrine concentrations were found, but NE(MIF) did not change. Left stellate ganglion stimulation increased NE(MIF) from 3.4+/-0.5 to 8.2+/-1.5 nmol/L, but again, this increase was not enhanced by concomitant intracoronary epinephrine infusion. Intracoronary infusion of tyramine resulted in a negligible increase in epinephrine concentration in myocardial interstitial fluid (EPI(MIF)), whereas 30 minutes after infusion of epinephrine an increase of 9.5 nmol/L in EPI(MIF) was observed, indicating that epinephrine is taken up by and released from cardiac sympathetic neurons. Although 68% to 78% of infused epinephrine was extracted over the heart, the ratio of interstitial to arterial epinephrine concentrations was only approximately 20%, increasing to 29% with neuronal reuptake inhibition. CONCLUSIONS: Our findings demonstrate epinephrine release from cardiac sympathetic neurons, but they do not provide evidence that epinephrine augments cardiac sympathoneural norepinephrine release under basal conditions or during sympathetic activation

    Plasma bile acids are not associated with energy metabolism in humans

    Get PDF
    Bile acids (BA) have recently been shown to increase energy expenditure in mice, but this concept has not been tested in humans. Therefore, we investigated the relationship between plasma BA levels and energy expenditure in humans. Type 2 diabetic (T2DM) patients (n = 12) and gender, age and BMI-matched healthy controls (n = 12) were studied before and after 8 weeks of treatment with a BA sequestrant. In addition, patients with liver cirrhosis (n = 46) were investigated, since these display elevated plasma BA together with increased energy expenditure. This group was compared to gender-, age- and BMI-matched healthy controls (n = 20). Fasting plasma levels of total BA and individual BA species as well as resting energy expenditure were determined. In response to treatment with the BA sequestrant, plasma deoxycholic acid (DCA) levels decreased in controls (-60%, p &lt;0.05) and T2DM (-32%, p &lt;0.05), while chenodeoxycholic acid (CDCA) decreased in controls only (-33%, p &lt;0.05). Energy expenditure did not differ between T2DM and controls at baseline and, in contrast to plasma BA levels, was unaffected by treatment with the BA sequestrant. Total BA as well as individual BA species did not correlate with energy expenditure at any time throughout the study. Patients with cirrhosis displayed on average an increase in energy expenditure of 18% compared to values predicted by the Harris-Benedict equation, and plasma levels of total BA (up to 12-fold) and individual BA (up to 20-fold) were increased over a wide range. However, neither total nor individual plasma BA levels correlated with energy expenditure. In addition, energy expenditure was identical in patients with a cholestatic versus a non-cholestatic origin of liver disease while plasma total BA levels differed four-fold between the groups. In conclusion, in the various (patho) physiological conditions studied, plasma BA levels were not associated with changes in energy expenditure. Therefore, our data do not support an important role of circulating BA in the control of human energy metabolism.</p

    Perivascular adipose tissue-derived nitric oxide compensates endothelial dysfunction in aged pre-atherosclerotic apolipoprotein E-deficient rats

    Get PDF
    BACKGROUND AND AIMS: Atherosclerosis is a major contributor to global mortality and is accompanied by vascular inflammation and endothelial dysfunction. Perivascular adipose tissue (PVAT) is an established regulator of vascular function with emerging implications in atherosclerosis. We investigated the modulation of aortic relaxation by PVAT in aged rats with apolipoprotein E deficiency (ApoE-/-) fed a high-fat diet as a model of early atherosclerosis. METHODS AND RESULTS: ApoE-/- rats (N = 7) and wild-type Sprague-Dawley controls (ApoE+/+, N = 8) received high-fat diet for 51 weeks. Hyperlipidemia was confirmed in ApoE-/- rats by elevated plasma cholesterol (p < 0.001) and triglyceride (p = 0.025) levels. Early atherosclerosis was supported by increased intima/media thickness ratio (p < 0.01) and ED1-positive macrophage influx in ApoE-/- aortic intima (p < 0.001). Inflammation in ApoE-/- PVAT was characteristic by an increased [18F]FDG uptake (p < 0.01), ED1-positive macrophage influx (p = 0.0003), mRNA expression levels of CD68 (p < 0.001) and IL-1β (p < 0.01), and upregulated iNOS protein (p = 0.011). The mRNAs of MCP-1, IL-6 and adiponectin remained unchanged in PVAT. Aortic PVAT volume measured with micro-PET/CT was increased in ApoE-/- rats (p < 0.01). Maximal endothelium-dependent relaxation (EDR) to acetylcholine in ApoE-/- aortic rings without PVAT was severely impaired (p = 0.012) compared with controls, while ApoE-/- aortic rings with PVAT showed higher EDR than controls. All EDR responses were blocked by L-NMMA and the expression of eNOS mRNA was increased in ApoE-/- PVAT (p = 0.035). CONCLUSION: Using a rat ApoE-/- model of early atherosclerosis, we capture a novel mechanism by which inflammatory PVAT compensates severe endothelial dysfunction by contributing NO upon cholinergic stimulation

    Type II Secretory Phospholipase A2 and Prognosis in Patients with Stable Coronary Heart Disease: Mendelian Randomization Study

    Get PDF
    Serum type II secretory phospholipase A(2) (sPLA(2)-IIa) has been found to be predictive of adverse outcomes in patients with stable coronary heart disease. Compounds targeting sPLA(2)-IIa are already under development. This study investigated if an association of sPLA(2)-IIa with secondary cardiovascular disease (CVD) events may be of causal nature or mainly a matter of confounding by correlated cardiovascular risk markers.Eight-year follow-up data of a prospective cohort study (KAROLA) of patients who underwent in-patient rehabilitation after an acute cardiovascular event were analysed. Associations of polymorphisms (SNP) in the sPLA(2)-IIa-coding gene PLA2G2A with serum sPLA(2)-IIa and secondary fatal or non-fatal CVD events were examined by multiple regression. Hazard ratios (HR) were compared with those expected if the association between sPLA(2)-IIa and CVD were causal. The strongest determinants of sPLA(2)-IIa (rs4744 and rs10732279) were associated with an increase of serum concentrations by 81% and 73% per variant allele. HRs (95% confidence intervals) estimating the associations of the SNPs with secondary CVD events were increased, but not statistically significant (1.16 [0.89-1.51] and 1.18 [0.91-1.52] per variant allele, respectively). However, these estimates were very similar to those expected when assuming causality (1.18 and 1.17), based on an association of natural log-transformed sPLA(2)-IIa concentration with secondary events with HR = 1.33 per unit.The present findings regarding genetic polymorphisms, determination of serum sPLA(2)-IIa, and prognosis in CVD patients are consistent with a genuine causal relationship and thus might point to a valid drug target for prevention of secondary CVD events

    Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein—Mediated Reverse Cholesterol Transport

    Get PDF
    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall macrophage-to-feces RCT, knockout of both HL and EL leaves RCT essentially unaffected. With respect to important individual steps of RCT, current data on the role of EL and HL in cholesterol efflux are not conclusive. Both enzymes increase hepatic selective cholesterol uptake; however, this does not translate into altered biliary cholesterol secretion, which is regarded the final step of RCT. Also, the impact of HL and EL on atherosclerosis is not clear cut; rather it depends on respective experimental conditions and chosen models. More mechanistic insights into the diverse biological properties of these enzymes are therefore required to firmly establish EL and HL as targets for the treatment of atherosclerotic cardiovascular disease
    corecore