10 research outputs found
Continental-scale quantification of landscape values using social media data
Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platformsâPanoramio, Flickr, and Instagramâand quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries
Integrating human behavior dynamics into drought risk assessment:A sociohydrologic, agent-based approach
Droughts are a persistent and costly hazard impacting human and environmental systems. As climate variability continues to increase and socioeconomic development influences the distribution of wealth and people, drought risk is expected to increase in many parts of the world. The unique characteristics of droughtsâ namely their slow onset, large spatiotemporal extent, human-influenced propagation, delayed impacts and teleconnection potentialâmake it difficult to correctly assess drought impact and calculate risk. Further complicating this calculation is the capacity for humans to make adaptive decisions before, during, and after a drought event, which in turn alters expected impacts. In this sense, droughts are equally a social and hydroclimatic issue. Risk perception is one of the main factors driving adaptation decisions, yet most models neglect how humans view and respond to risk, and in particular how experiences influence decisions through time. In this overview, we describe a framework that extends the traditional risk modeling approach to include the two-way feedback between the transient adaptation decisions and drought exposure, vulnerability and hazard. We discuss how a sociohydrologic, agent-based modeling setup, focused on individual and collective actions, can simulate the adaptive behaviors of different stakeholders to examine how emergent actions might influence projected drought risk. We suggest such an approach can provide a test-bed for understanding adaptive behaviors in an increasingly drought-prone world and could allow for better prioritization of drought adaptation strategies; refined understanding of future scenarios; and a vehicle to drive planning and resilience building. This article is categorized under: Science of Water > Water Extremes Engineering Water > Planning Water Engineering Water > Methods