4,360 research outputs found

    Calorimetric Assessment of Rates of Desorption

    Get PDF

    Big Data and Analysis of Data Transfers for International Research Networks Using NetSage

    Get PDF
    Modern science is increasingly data-driven and collaborative in nature. Many scientific disciplines, including genomics, high-energy physics, astronomy, and atmospheric science, produce petabytes of data that must be shared with collaborators all over the world. The National Science Foundation-supported International Research Network Connection (IRNC) links have been essential to enabling this collaboration, but as data sharing has increased, so has the amount of information being collected to understand network performance. New capabilities to measure and analyze the performance of international wide-area networks are essential to ensure end-users are able to take full advantage of such infrastructure for their big data applications. NetSage is a project to develop a unified, open, privacy-aware network measurement, and visualization service to address the needs of monitoring today's high-speed international research networks. NetSage collects data on both backbone links and exchange points, which can be as much as 1Tb per month. This puts a significant strain on hardware, not only in terms storage needs to hold multi-year historical data, but also in terms of processor and memory needs to analyze the data to understand network behaviors. This paper addresses the basic NetSage architecture, its current data collection and archiving approach, and details the constraints of dealing with this big data problem of handling vast amounts of monitoring data, while providing useful, extensible visualization to end users

    High concentrations of flavor chemicals are present in electronic cigarette refill fluids.

    Get PDF
    We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol ("Menthol Arctic") and ethyl maltol ("No. 64") that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health

    Ecosystem uptake and transfer of Sellafield-derived radiocarbon (14C). Part 1. The Irish Sea

    Get PDF
    Ecosystem uptake and transfer processes of Sellafield-derived radiocarbon (14C) within the Irish Sea were examined. Highly variable activities in sediment, seawater and biota indicate complex 14C dispersal and uptake dynamics. All east basin biota exhibited 14C enrichments above ambient background while most west basin biota had 14C activities close to background, although four organisms including two slow-moving species were significantly enriched. The western Irish Sea gyre is a suggested pathway for transfer of 14C to the west basin and retention therein. Despite ongoing Sellafield 14C discharges, organic sediments near Sellafield were significantly less enriched than associated benthic organisms. Rapid scavenging of labile, 14C-enriched organic material by organisms and mixing to depth of 14C-enriched detritus arriving at the sediment/water interface are proposed mechanisms to explain this. All commercially important fish, crustaceans and molluscs showed 14C enrichments above background; however, the radiation dose from their consumption is extremely low and radiologically insignificant

    Accumulation of Sellafield-derived radiocarbon (14C) in Irish Sea and West of Scotland intertidal shells and sediments

    Get PDF
    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the north west coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon (14C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This 14C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate 14C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in 14C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine 14C-enriched material close to Sellafield

    Longitudinal Variations in Jupiter's Winds

    Get PDF
    Long-term studies of Jupiter's zonal wind field revealed temporal variations on the order of 20 to 40 m/s at many latitudes, greater than the typical data uncertainties of 1 to 10 m/s. No definitive periodicities were evident, however, though some latitudinally-confined signals did appear at periods relevant to the Quasi- Quadrennial Oscillation (Simon-Miller & Gierasch, Icarus, in press). As the QQO appears, from vertical temperature profiles, to propagate downward, it is unclear why a signal is not more obvious, unless other processes dominate over possibly weaker forcing from the QQO. An additional complication is that zonal wind profiles represent an average over some particular set of longitudes for an image pair and most data sets do not offer global wind coverage. Lien avoiding known features, such as the large anticyclonic vortices especially prevalent in the south, there can be distinct variations in longitude. We present results on the full wind field from Voyager and Cassini data, showing apparent longitudinal variations of up to 60 m/s or more. These are particularly obvious near disruptions such as the South Equatorial Disturbance, even when the feature itself is not clearly visible. These two dates represent very different states of the planet for comparison: Voyagers 1 & 2 flew by Jupiter shortly after a global upheaval, while many regions were in a disturbed state, while the Cassini view is typical of a more quiescent period present during much of the 1990s and early 2000s

    Graphics for uncertainty

    Get PDF
    Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a ‘density strip’ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data

    Auditory attention influences trajectories of symbol–speech sound learning in children with and without dyslexia

    Get PDF
    The acquisition of letter–speech sound correspondences is a fundamental process underlying reading development, one that could be influenced by several linguistic and domain-general cognitive factors. In the current study, we mimicked the first steps of this process by examining behavioral trajectories of audiovisual associative learning in 110 7- to 12-year-old children with and without dyslexia. Children were asked to learn the associations between eight novel symbols and native speech sounds in a brief training and subsequently read words and pseudowords written in the artificial orthography. We then investigated the influence of auditory attention as one of the putative domain-general factors influencing associative learning. To this aim, we assessed children with experimental measures of auditory sustained selective attention and interference control. Our results showed shallower learning trajectories in children with dyslexia, especially during the later phases of the training blocks. Despite this, children with dyslexia performed similarly to typical readers on the post-training reading tests using the artificial orthography. Better auditory sustained selective attention and interference control skills predicted greater response accuracy during training. Sustained selective attention was also associated with the ability to apply these novel correspondences in the reading tests. Although this result has the limitations of a correlational design, it denotes that poor attentional skills may constitute a risk during the early stages of reading acquisition, when children start to learn letter–speech sound associations. Importantly, our findings underscore the importance of examining dynamics of learning in reading acquisition as well as individual differences in more domain-general attentional factors

    Attentional modulation of neural sound tracking in children with and without dyslexia

    Get PDF
    Auditory selective attention forms an important foundation of children's learning by enabling the prioritisation and encoding of relevant stimuli. It may also influence reading development, which relies on metalinguistic skills including the awareness of the sound structure of spoken language. Reports of attentional impairments and speech perception difficulties in noisy environments in dyslexic readers are also suggestive of the putative contribution of auditory attention to reading development. To date, it is unclear whether non-speech selective attention and its underlying neural mechanisms are impaired in children with dyslexia and to which extent these deficits relate to individual reading and speech perception abilities in suboptimal listening conditions. In this EEG study, we assessed non-speech sustained auditory selective attention in 106 7-to-12-year-old children with and without dyslexia. Children attended to one of two tone streams, detecting occasional sequence repeats in the attended stream, and performed a speech-in-speech perception task. Results show that when children directed their attention to one stream, inter-trial-phase-coherence at the attended rate increased in fronto-central sites; this, in turn, was associated with better target detection. Behavioural and neural indices of attention did not systematically differ as a function of dyslexia diagnosis. However, behavioural indices of attention did explain individual differences in reading fluency and speech-in-speech perception abilities: both these skills were impaired in dyslexic readers. Taken together, our results show that children with dyslexia do not show group-level auditory attention deficits but these deficits may represent a risk for developing reading impairments and problems with speech perception in complex acoustic environments. Research Highlights: Non-speech sustained auditory selective attention modulates EEG phase coherence in children with/without dyslexia Children with dyslexia show difficulties in speech-in-speech perception Attention relates to dyslexic readers’ speech-in-speech perception and reading skills Dyslexia diagnosis is not linked to behavioural/EEG indices of auditory attention

    Structure and Metal Binding Properties of ZnuA, a Periplasmic Zinc Transporter from \u3cem\u3eEscherichia coli\u3c/em\u3e

    Get PDF
    ZnuA is the periplasmic Zn2+-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn2+-bound, and Co2+-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn2+ with Co2+ results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn2+ periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn2+ (estimated K d \u3c 20 nM), Co2+, Ni2+, Cu2+, Cu+, and Cd2+, but not Mn2+. Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn2+ substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer
    • …
    corecore