343 research outputs found

    Dynamic Analysis of a Vehicular-mounted Automatic Weapon–Planar Case

    Get PDF
    This study analyses the dynamic behaviour of a machine gun mounted on a four-wheeled vehicle. The entire system comprises three parts: the gun, the flexible monopod, and the vehicle. The weapon has a multirigid- body mechanism and comprises a rigid receiver, a rigid bolt, a bullet, a buffer, and a recoil spring. The vehicle model features a rigid vehicle body, suspension springs, shock absorbers, and wheels. The finite element method is used to model the flexible monopod connecting the gun and the vehicle. This study combines a computer-aided analysis of rigid-body mechanisms with finite element analysis of a flexible structure to derive the total equations of motion, incorporating the Lagrange multiplier. The total equations of motion are solved with numerical integration to simulate the transient response of the whole system. This approach can easily resolve the problem of rigid-flexible coupling effect, and promote the function of the whole system in the engineering design phase.Defence Science Journal, 2009, 59(3), pp.265-272, DOI:http://dx.doi.org/10.14429/dsj.59.152

    Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hierarchical clustering tree (HCT) with a dendrogram <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> and the singular value decomposition (SVD) with a dimension-reduced representative map <abbrgrp><abbr bid="B2">2</abbr></abbrgrp> are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures.</p> <p>Results</p> <p>This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose) seriation by Chen <abbrgrp><abbr bid="B3">3</abbr></abbrgrp> as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends.</p> <p>Conclusion</p> <p>We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at <url>http://gap.stat.sinica.edu.tw/Software/GAP</url>.</p

    THE ANALYSES OF KNEE INTERNAL FORCE DURING PASSIVE REPETITIVE ISOKINETIC PLYOMETRIC TRAINING

    Get PDF
    Passive Repetitive Isokinetic (PRI) training was a novel method for improving sport performance (Chiang Liu et al, 2005). As you know it can comprehensively advance muscular power characteristic of an athlete (Hsiang-Hsin Wang et al, 2005). But did you ever think that PRP training program might cause sport injury. It is not clear how much training effect would cause injury. Especially knee joint would sustain the most internal force for lower extremity. Therefore, the purpose of this study is to investigate the effects of plymeric training on overuse injuries of the knee. The hypothesis is that the torque of knee joint variables will be greatly affected by injury

    Malignant transformation of oral potentially malignant disorders in males: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oral squamous cell carcinoma could be preceded by clinically evident oral potentially malignant disorders (OPMDs). Transformation of OPMDs to cancer has been studied in several population groups. It is difficult to undertake comparisons across populations due to variations in the methods of computation of malignancy rates among different studies. The aim of our study was to estimate the rate of malignant transformation of OPMDs taking into account the duration of follow-up and to identify the significant factors indicative of malignant potential.</p> <p>Methods</p> <p>A total of 148 male patients with OPMDs were included. They were selected among all consecutive subjects registered at the maxillofacial clinic at a medical hospital in Kaohsiung, Taiwan. The mean follow up period was 37.8 months.</p> <p>Results</p> <p>The malignant transformation rate was highest in subjects diagnosed with oral epithelial dysplasia. In this group the transformation rate was 7.62 per 100 persons-year. The rate in the group with verrucous hyperplasia (VH) was 5.21 per 100 persons-year, and in those with hyperkeratosis or epithelial hyperplasia was 3.26 per 100 persons-year. The anatomical site of OPMDs was the only statistically significant variable associated with malignancy. The hazard rate ratio (HRR) was 2.41 times for tongue lesions when compared with buccal lesions.</p> <p>Conclusion</p> <p>The reported discrepancies of malignant transformation of OPMDs involve the follow-up time to cancer development and hence it is preferable to use a time-to-event estimation for comparisons. We found that malignant transformation of OPMDs involving the tongue was significantly higher than in other anatomical subsites after adjusting for the clinicopathological type or lifestyle factors at diagnosis.</p

    Coherent electrical readout of defect spins in 4H-SiC by photo-ionization at ambient conditions

    Full text link
    Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for such defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects the approach presented here holds promises for scalability of future SiC quantum devices

    An overview of the Phalaenopsis orchid genome through BAC end sequence analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phalaenopsis </it>orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding.</p> <p>Results</p> <p>We used two BAC libraries (constructed using the <it>Bam</it>HI and <it>Hin</it>dIII restriction enzymes) of <it>Phalaenopsis equestris </it>to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the <it>Bam</it>HI and <it>Hin</it>dIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the <it>Phalaenopsis </it>genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or <it>Arabidopsis</it>, and even fewer mapped to the rice genome. This work will facilitate analysis of the <it>Phalaenopsis </it>genome, and will help clarify similarities and differences in genome composition between orchids and other plant species.</p> <p>Conclusion</p> <p>Using BES analysis, we obtained an overview of the <it>Phalaenopsis </it>genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the <it>Phalaenopsis </it>genome and advances our knowledge thereof.</p

    Snowmass 2021 Cross Frontier Report: Dark Matter Complementarity (Extended Version)

    Full text link
    The fundamental nature of Dark Matter is a central theme of the Snowmass 2021 process, extending across all frontiers. In the last decade, advances in detector technology, analysis techniques and theoretical modeling have enabled a new generation of experiments and searches while broadening the types of candidates we can pursue. Over the next decade, there is great potential for discoveries that would transform our understanding of dark matter. In the following, we outline a road map for discovery developed in collaboration among the frontiers. A strong portfolio of experiments that delves deep, searches wide, and harnesses the complementarity between techniques is key to tackling this complicated problem, requiring expertise, results, and planning from all Frontiers of the Snowmass 2021 process.Comment: v1 is first draft for community commen

    Neuron Regeneration and Proliferation Effects of Danshen and Tanshinone IIA

    Get PDF
    This study evaluates the proliferative effects of danshen and its monomer extract, tanshinone IIA, on Schwann cell proliferation. A piece of silicone rubber was guided across a 15-mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of danshen (0–100 mg/mL). The results showed that danshen increased the expressions of uPA, cyclin D1, E and ERK, JNK, and P38 MAP kinases via the FGF-2 signaling pathway in a dose-dependent manner. RSC96, Schwann cells were also administered with danshen (0, 20, 40, 60, 80, and 100 μg/mL) and tanshinone IIA (0, 2, 4, 6, 8, and 10 μg/mL). In lower concentrations, danshen and tanshinone IIA exhibited an apparent effect on Schwann cells. Similar effects were also demonstrated in the FGF-2-uPA regulating cascade and cell cycle proliferative protein results. Schwann cell migration was elevated as well. We used MAPK-signaling chemical inhibitors and identified the proliferative effects of danshen and tanshinone IIA as MAPK-signaling dependent. The results from the in vitro systems indicate that danshen and tanshinone IIA can be used to induce Schwann cell proliferation, and in vivo results potentially suggest that danshen and tanshinone IIA might enhance neuron regeneration

    Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Get PDF
    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3
    corecore