9 research outputs found

    Effect of Silica Nanoparticles on Properties of Coatings Based on Acrylic Emulsion Resin

    Get PDF
    Effect of nanosilica size on physic-mechanical properties, thermal stability and weathering durability of coating based on acrylic emulsion. Nanocomposite coating formulas were filled by 2 wt.% nanosilica particles which were used in this study, namely: nanosilica from Sigma (15-20nm), nansilica from rice husk (~70-200 nm) and nanosilica from Arosil – Belgium (7-12 nm). Obtained results showed that viscosity flow of coating formula containing nanosilica from Arosil saw the highest flow-time while coating formulas filled other nanosilica and unfilled nanosilica experienced similar flow-time. In presence of nanosilica, coating properties were improved in comparison with neat coating. However, coating filled by nanosilica from rice husk indicated the best properties in studied coating formula. It may explained that size of nanosilica from rice husk was the largest in studied nanosilica particles and thus easily dispersing into coating formula

    Cutting Force Model for Thermal-Assisted Machining of Tool Steel Based on the Taguchi Method

    No full text
    This paper investigates cutting force in thermal-assisted machining (TAM) by induction heating for SKD11 tool steel which is widely used in the mold industry. Experimental studies were first conducted at room and elevated temperatures to evaluate the effectiveness of the heating process on chip morphology and the cutting forces during the thermal-assisted machining and comparing with conventional machining method. The Taguchi method based on orthogonal array and analysis of variance ANOVA method was then used to design the number of experiments and evaluate the influence of cutting speed, feed rate, cutting depth, and elevated temperature on the cutting force. Study results showed a decrease in the cutting force in the TAM process. The optimal condition of parameters obtained for thermal-assisted machining were cutting speed 280 m/min, feed rate 230 mm/min, cutting depth 0.5 mm and temperature 400 °C. Finally, a proposed equation was established to determine the cutting force that was presented as a function of elevated temperatures when milling SKD11 material. A proposed cutting force model was compared, evaluated and confirmed to be in good agreement with experimental results

    Smectites and related silicates

    No full text

    A Systematic Literature Review for Personnel Scheduling Problems

    No full text
    corecore