350 research outputs found

    Multipass wide-field phase imager

    Get PDF
    Advances in optical imaging always look for an increase in sensitivity and resolution among other practicability aspects. Within the same scope, in this work we report a versatile interference contrast imaging technique, with high phase sensitivity and a large field-of-view of several mm2. Sensitivity is increased through the use of a self-imaging non-resonant cavity, which causes photons to probe the sample in multiple rounds before being detected, where the configuration can be transmissive or reflective. Phase profiles can be resolved individually for each round thanks to a specially designed single-photon camera with time-of-flight capabilities and true pixels-off gating. Measurement noise is reduced by novel data processing combining the retrieved sample profiles from multiple rounds. Our protocol is especially useful under extremely low light conditions as required by biological or photo-sensitive samples. Results demonstrate more than a four-fold reduction in phase measurement noise, compared to single round imaging, and values close to the predicted sensitivity in case of the best possible cavity configuration, where all photons are maintained until n rounds. We also find good agreement with the theoretical predictions for low number of rounds, where experimental imperfections would play a minor role. The absence of a laser or cavity lock-in mechanism makes the technique an easy to use inspection tool

    Binding of Silver(I) Ions by Alfalfa Biomass (Medicago Sativa): Batch PH, Time, Temperature, and Ionic Strength Studies

    Get PDF
    In this study, the use of alfalfa biomass as a cost-effective and environmentally safe technique to recover Ag(I) ions from aqueous solutions is reported. This investigation consisted of batch pH profile, time, temperature, and ionic strength dependence studies. Results showed that alfalfa biomass presented the highest adsorption of Ag(I) ions in the pH range of 7 to 9 with a maximum adsorption capacity of 27.37 mg Ag•g-1 of dry biomass, evaluated with a solution of 32.4 ppm of Ag(I). Time and temperature studies demonstrated a stable adsorption of Ag(I) ions by the biomass during the first hour of exposure, with a small decrease in adsorption after this period. Temperature experiments showed that Ag(I) adsorption decreases significantly at 50 ºC as compared to 4ºC and 24 ºC. However, the differences between 4ºC and 24ºC are small. Ionic strength experiments showed that interfering ions (Na and Ca) reduce the adsorption capacity of the biomass. Results of this investigation showed that alfalfa biomass can be effectively used in the recovery process of silver ions from aqueous solutions

    Massively Parallel Haplotyping on Microscopic Beads for the High-Throughput Phase Analysis of Single Molecules

    Get PDF
    In spite of the many advances in haplotyping methods, it is still very difficult to characterize rare haplotypes in tissues and different environmental samples or to accurately assess the haplotype diversity in large mixtures. This would require a haplotyping method capable of analyzing the phase of single molecules with an unprecedented throughput. Here we describe such a haplotyping method capable of analyzing in parallel hundreds of thousands single molecules in one experiment. In this method, multiple PCR reactions amplify different polymorphic regions of a single DNA molecule on a magnetic bead compartmentalized in an emulsion drop. The allelic states of the amplified polymorphisms are identified with fluorescently labeled probes that are then decoded from images taken of the arrayed beads by a microscope. This method can evaluate the phase of up to 3 polymorphisms separated by up to 5 kilobases in hundreds of thousands single molecules. We tested the sensitivity of the method by measuring the number of mutant haplotypes synthesized by four different commercially available enzymes: Phusion, Platinum Taq, Titanium Taq, and Phire. The digital nature of the method makes it highly sensitive to detecting haplotype ratios of less than 1∶10,000. We also accurately quantified chimera formation during the exponential phase of PCR by different DNA polymerases

    Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients

    Get PDF
    Chronic pain is a major health care issue characterized by ongoing pain and a variety of sensory, cognitive, and affective abnormalities. The neural basis of chronic pain is still not completely understood. Previous work has implicated prefrontal brain areas in chronic pain. Furthermore, prefrontal neuronal oscillations at gamma frequencies (60–90 Hz) have been shown to reflect the perceived intensity of longer lasting experimental pain in healthy human participants. In contrast, noxious stimulus intensity has been related to alpha (8–13 Hz) and beta (14–29 Hz) oscillations in sensorimotor areas. However, it is not fully understood how the intensity of ongoing pain as the key symptom of chronic pain is represented in the human brain. Here, we asked 31 chronic back pain patients to continuously rate their ongoing pain while simultaneously recording electroencephalography (EEG). Time–frequency analyses revealed a positive association between ongoing pain intensity and prefrontal beta and gamma oscillations. No association was found between pain and alpha or beta oscillations in sensorimotor areas. These findings indicate that ongoing pain as the key symptom of chronic pain is reflected by neuronal oscillations implicated in the subjective perception of longer lasting pain rather than by neuronal oscillations related to the processing of objective nociceptive input. The findings, thus, support a dissociation of pain intensity from nociceptive processing in chronic back pain patients. Furthermore, although possible confounds by muscle activity have to be taken into account, they might be useful for defining a neurophysiological marker of ongoing pain in the human brain

    Influence of Biopsy Technique on Molecular Genetic Tumor Characterization in Non-Small Cell Lung Cancer—The Prospective, Randomized, Single-Blinded, Multicenter PROFILER Study Protocol

    Get PDF
    The detection of molecular alterations is crucial for the individualized treatment of advanced non-small cell lung cancer (NSCLC). Missing targetable alterations may have a major impact on patient’s progression free and overall survival. Although laboratory testing for molecular alterations has continued to improve; little is known about how biopsy technique affects the detection rate of different mutations. In the retrospective study detection rate of epidermal growth factor (EGFR) mutations in tissue extracted by bronchoscopic cryobiopsy (CB was significantly higher compared to other standard biopsy techniques. This prospective, randomized, multicenter, single blinded study evaluates the accuracy of molecular genetic characterization of NSCLC for different cell sampling techniques. Key inclusion criteria are suspected lung cancer or the suspected relapse of known NSCLC that is bronchoscopically visible. Patients will be randomized, either to have a CB or a bronchoscopic forceps biopsy (FB). If indicated, a transbronchial needle aspiration (TBNA) of suspect lymph nodes will be performed. Blood liquid biopsy will be taken before tissue biopsy. The primary endpoint is the detection rate of molecular genetic alterations in NSCLC, using CB and FB. Secondary endpoints are differences in the combined detection of molecular genetic alterations between FB and CB, TBNA and liquid biopsy. This trial plans to recruit 540 patients, with 178 evaluable patients per study cohort. A histopathological and molecular genetic evaluation will be performed by the affiliated pathology departments of the national network for genomic medicine in lung cancer (nNGM), Germany. We will compare the diagnostic value of solid tumor tissue, lymph node cells and liquid biopsy for the molecular genetic characterization of NSCLC. This reflects a real world clinical setting, with potential direct impact on both treatment and survival

    HIV pre-exposure prophylaxis during the SARS-CoV-2 pandemic: Results from a prospective observational study in Germany.

    Get PDF
    Aims: Since 2017, HIV pre-exposure prophylaxis (PrEP) care has been provided through an intersectoral collaboration at WIR (Walk-in-Ruhr, Center for Sexual Health and Medicine, Bochum, Germany). The aim of this study was to establish possible impact of COVID-restrictions on the sexual behavior of PrEP users in North Rhine-Westphalia. Methods: The current PrEP study collected data of individuals using PrEP, their sexual behavior and sexually transmitted infections (STIs) before (each quarter of year 2018) and during the COVID-19 pandemic (each quarter of year 2020). Results: During the first lockdown in Germany from mid-March until May 2020, PrEP-care appointments at WIR were postponed or canceled. Almost a third of PrEP users had discontinued their PrEP intake in the 2nd quarter of 2020 due to alteration of their sexual behavior. The number of sexual partners decreased from a median of 14 partners in the previous 6 months in 1st quarter of 2020, to 7 partners in 4th quarter of 2020. Despite such a significant reduction in partner number during the pandemic in comparison to the pre-pandemic period, a steady rate of STIs was observed among PrEP users in 2020. Conclusion: The SARS-CoV-2-pandemic has impacted PrEP-using MSM in North Rhine-Westphalia with respect to their PrEP intake regimen and sexual behavior in 2020. Our study revealed a steady rate of STI among PrEP users even during the pandemic, thus highlighting the importance of ensuring appropriate HIV/STI prevention services in times of crisis
    • …
    corecore