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Abstract
Chronic pain is a major health care issue characterized by ongoing pain and a variety of sensory,

cognitive, and affective abnormalities. The neural basis of chronic pain is still not completely

understood. Previous work has implicated prefrontal brain areas in chronic pain. Furthermore,

prefrontal neuronal oscillations at gamma frequencies (60–90 Hz) have been shown to reflect

the perceived intensity of longer lasting experimental pain in healthy human participants. In con-

trast, noxious stimulus intensity has been related to alpha (8–13 Hz) and beta (14–29 Hz) oscil-

lations in sensorimotor areas. However, it is not fully understood how the intensity of ongoing

pain as the key symptom of chronic pain is represented in the human brain. Here, we asked

31 chronic back pain patients to continuously rate their ongoing pain while simultaneously

recording electroencephalography (EEG). Time–frequency analyses revealed a positive associa-

tion between ongoing pain intensity and prefrontal beta and gamma oscillations. No association

was found between pain and alpha or beta oscillations in sensorimotor areas. These findings

indicate that ongoing pain as the key symptom of chronic pain is reflected by neuronal oscilla-

tions implicated in the subjective perception of longer lasting pain rather than by neuronal oscil-

lations related to the processing of objective nociceptive input. The findings, thus, support a

dissociation of pain intensity from nociceptive processing in chronic back pain patients. Further-

more, although possible confounds by muscle activity have to be taken into account, they might

be useful for defining a neurophysiological marker of ongoing pain in the human brain.
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1 | INTRODUCTION

Chronic pain is a pathological condition characterized by ongoing pain

and a range of sensory, cognitive, and affective abnormalities

(Moriarty, McGuire, & Finn, 2011; Velly & Mohit, 2018). It affects

between 20% and 30% of the population and represents a large bur-

den to patients and health care systems (Rice, Smith, & Blyth, 2016).

Its treatment is often difficult (Maher, Underwood, & Buchbinder,

2017), partially due to an incomplete understanding of underlying

neural mechanisms.

The brain plays a central role in chronic pain. Many studies have

assessed the persisting characteristics of the pathological chronic pain

state by comparing brain structure and brain function between

chronic pain patients and healthy participants. They revealed that

chronic pain is associated with extensive changes of brain structure

and function (Baliki & Apkarian, 2015; Kuner & Flor, 2017; Pinheiro
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et al., 2016; Rauschecker, May, Maudoux, & Ploner, 2015), which con-

sistently involve prefrontal and limbic structures.

Fewer studies have explicitly investigated how the intensity of

ongoing pain as the key symptom of chronic pain is represented in the

human brain. Such brain markers of ongoing pain intensity are of par-

ticular interest as they constitute potential targets for pain treatment

using approaches such as neurofeedback and neurostimulation

(Jensen, Day, & Miro, 2014; Sitaram et al., 2017; Thut et al., 2017).

Functional magnetic resonance imaging (fMRI) studies of different

chronic pain populations have shown that ongoing pain intensity is

reflected by blood-oxygen level dependent (BOLD) signals in the

medial prefrontal cortex (Baliki et al., 2006; Geha et al., 2007; Parks

et al., 2011). However, the BOLD effect is an indirect measure of neu-

ronal activity, which does not differentiate between neuronal activity

at different frequencies. Neuronal oscillations at different frequencies

represent fundamental features of neuronal signaling and communica-

tion (Buzsaki & Draguhn, 2004; Donner & Siegel, 2011; Fries, 2015;

Wang, 2010) and can be individually targeted using neuromodulation

methods including neurofeedback (Jensen et al., 2014; Sitaram et al.,

2017; Thut et al., 2017). The direct neuronal correlate and the fre-

quency profile of the encoding of ongoing pain in chronic pain is still

unknown.

Electroencephalography (EEG) directly measures neuronal activity

at different frequencies. As a first approximation of ongoing pain in

chronic pain, we recently investigated the neurophysiological encod-

ing of ongoing experimental pain in healthy human participants using

EEG (Nickel et al., 2017; Schulz et al., 2015). These studies revealed a

detachment of perceived pain intensity from noxious stimulus inten-

sity already within a few minutes. Moreover, they showed that objec-

tive noxious stimulus intensity was inversely related to alpha

(8–13 Hz) and beta (14–29 Hz) oscillations in sensorimotor areas,

whereas subjective pain was positively related to neuronal oscillations

at gamma (60–90 Hz) frequencies in the prefrontal cortex.

Here, we hypothesized that the intensity of ongoing pain in

chronic pain is reflected by neuronal activity related to the perception

of longer lasting pain, that is, prefrontal gamma oscillations, rather

than neuronal activity related to nociceptive processing, that is, alpha

and beta oscillations in sensorimotor areas. We asked chronic back

pain patients to continuously rate their ongoing pain while recording

EEG. Time–frequency analyses revealed that ongoing pain intensity is

reflected by prefrontal gamma oscillations but not by alpha and beta

oscillations in sensorimotor areas. These findings hint at a direct neu-

rophysiological marker of ongoing pain as the key symptom of chronic

pain. Furthermore, they provide physiological support for a dissocia-

tion of ongoing pain from nociceptive processes in chronic pain.

2 | MATERIALS AND METHODS

2.1 | Participants

Thirty-one chronic back pain patients were included in the final sam-

ple of the study (age 56 �13 years [mean � standard deviation],

17 females, 30 right-handed). Data from five additional participants

were not further analyzed as they did not report pain during the

recording. General inclusion criteria were a clinical diagnosis of

chronic pain with the focus of pain in the back, a duration of pain

≥6 months and a minimum reported average pain intensity ≥4/10 dur-

ing the last 4 weeks (0 = no pain, 10 = worst imaginable pain). Partici-

pants were excluded if there had been acute changes of the pain

condition during the last 3 months, for example, due to recent injuries

or surgeries. Further exclusion criteria were major neurological dis-

eases such as strokes, epilepsy, or dementia, major psychiatric condi-

tions aside from depression, and severe internal diseases. Finally,

patients on medication with benzodiazepines were excluded. For pain

treatment, 14 patients took antidepressants (5 selective serotonin/

noradrenaline reuptake inhibitors, 8 tri/tetracyclic antidepressants,

and 1 other), 14 GABAergic anticonvulsants, 14 nonsteroidal anti-

inflammatories, and 10 opioids. In addition to a clinical examination,

patients were characterized using a range of clinical questionnaires

including the Medication Quantification Scale (MQS) (Harden et al.,

2005), the Beck Depression Inventory II (BDI) (Beck, Steer, & Brown,

1996), the State-Trait Anxiety Inventory (STAI) (Spielberger, Gorsuch,

Lushene, Vagg, & Jacobs, 1983), the short-form McGill pain Question-

naire (SF-MPQ) (Melzack, 1987), the Roland Morris Disability Ques-

tionnaire (RMDQ) (Roland & Morris, 1983), and the painDETECT

questionnaire (Freynhagen, Baron, Gockel, & Tolle, 2006). Please see

Table 1 for detailed patient characteristics. The nature of the experi-

mental procedures was explained to all participants and all gave writ-

ten informed consent. The study was approved by the ethics

committee of the Medical Faculty of the Technische Universität

München and carried out in accordance with the relevant guidelines

and regulations.

2.2 | Experimental design

The experiment consisted of two conditions; a spontaneous pain and a

visual control condition, which were recorded consecutively with a

short break in between. During both conditions, participants were

comfortably seated in front of a computer screen and wore head-

phones playing white noise to mask ambient noise. Both arms were

comfortably placed on arm rests. During the spontaneous pain condi-

tion, participants were asked to attentively monitor their ongoing pain

for 11 min and continuously rate the current pain intensity on a visual

analogue scale (VAS) anchored at no pain and worst imaginable pain

using a custom-built finger-span device with the right hand. The scale

was simultaneously presented on a screen by a vertical red bar, the

length of which represented the current pain intensity rating. Pain

was primarily localized in the back sometimes extending to other body

parts. Patients were asked to provide an overall rating of pain inten-

sity regardless of its current location. The visual control condition was

performed to control for activity related to the continuous rating pro-

cedure such as visual-motor performance, magnitude estimation, and

anticipation (Baliki, Baria, & Apkarian, 2011; Hashmi et al., 2013;

Nickel et al., 2017). Unbeknownst to the subject, in this condition,

10 min of the time course of the individual pain rating from the spon-

taneous pain condition were visually presented on the screen as

changes of the length of the vertical red bar over time. Participants

were instructed to continuously track the length of the bar, again

using the custom-built finger span device with their right hand. The
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first minute of the spontaneous pain rating time course was omitted

to leave out the initial positioning of the red bar to the current pain

intensity. As this condition used the pain rating time course from the

spontaneous pain condition, the spontaneous pain condition was always

performed first.

To become familiar with the procedures, all patients performed

5 min practice runs of each condition, using a predefined time course

of bar length changes for the practice run of the visual control condi-

tion. Stimulus presentation and timing was controlled using Matlab

(Mathworks, Natick, MA) and the Psychophysics Toolbox (http://

psychtoolbox.org/).

2.3 | Recordings

EEG data were recorded using an electrode montage of 64 electrodes

consisting of all 10–20 system electrodes and the additional elec-

trodes Fpz, CPz, POz, Oz, Iz, AF3/4, F5/6, FC1/2/3/4/5/6,

FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/10, P5/6, and

PO1/2/9/10 plus 2 electrodes below the outer canthus of each eye

(Easycap, Herrsching, Germany) and BrainAmp MR plus amplifiers

(Brain Products, Munich, Germany). All EEG electrodes were refer-

enced to FCz and grounded at AFz. Simultaneously, muscle activity

was recorded with 2 bipolar surface electromyography (EMG) elec-

trode montages placed on the right masseter and neck (semispinalis

capitis and splenius capitis) muscles (Davis, 1959) and a BrainAmp

ExG MR amplifier (Brain Products, Munich, Germany). EMG electrodes

were grounded at the cervical vertebra C2. All data were sampled at

1,000 Hz (0.1 μV resolution) and band-pass filtered between

0.016 Hz and 250 Hz. Impedances were kept below 20 kΩ. In addi-

tion, continuous (pain) ratings were fed into the EEG system and

recorded with the same sampling frequency.

2.4 | Preprocessing

Preprocessing was performed using the BrainVision Analyzer software

(Brain Products, Munich, Germany). Data were downsampled to

500 Hz. For artifact identification, a high-pass filter of 1 Hz and a

50 Hz notch filter for line noise removal were applied to the EEG data.

Independent component analysis was then applied (Jung et al., 2000)

and components representing eye movements and muscle artifacts

were identified based on component time courses and their topo-

graphical distribution. Furthermore, time intervals of 400 ms around

data points with amplitudes exceeding �100 μV and signal jumps

exceeding �30 μV were marked for rejection. Last, all data were visu-

ally inspected and additional bad segments marked. Subsequently,

independent components representing artifacts were subtracted from

the raw, unfiltered EEG data (Winkler, Debener, Muller, & Tanger-

mann, 2015) and EEG data were re-referenced to the average refer-

ence. In all analyses, data from min 3 to min 11 from the spontaneous

pain and from min 2 to min 10 from the visual control condition were

used, resulting in a total of 9 min per condition. Thus, corresponding

sections of both conditions were selected while excluding initial

adjustments of the rating at the beginning of each condition. EMG

electrodes were not included in the artifact rejection procedure, but

intervals previously marked as bad based on the EEG data were

omitted from all further analyses of both EEG and EMG data. A con-

trol analysis of the spontaneous pain condition did not show a signifi-

cant relationship between pain ratings and the percentage of data

rejected (mean r = −.06, Pearson correlation; p = .55, t test vs. 0).

2.5 | Relationships between chronic pain intensity
and brain activity

All further analyses were performed using the FieldTrip toolbox

(Oostenveld, Fries, Maris, & Schoffelen, 2011), custom programming

in Matlab, and IBM SPSS Statistics for Windows (SPSS), version

25 (IBM Corp., Armonk, NY). The main goal of our analyses was to

relate spontaneous fluctuations of the ongoing pain intensity to neu-

ronal activity in different frequency bands.

2.5.1 | Electrode space analysis

For each subject, EEG data of the spontaneous pain condition were

first bandpass-filtered in theta (4–7 Hz), alpha (8–13 Hz), beta

(14–29 Hz), and gamma (60–90 Hz) frequency bands using a fourth-

order Butterworth filter (forward and backward). To obtain time

courses of amplitude changes in the different frequency bands, that is,

amplitude envelopes, absolute values of the Hilbert transform were

computed. These envelopes and the raw pain ratings were then fur-

ther downsampled and smoothed using a moving average with a win-

dow length of 1 s and a step size of 0.1 s. For each electrode, the

amplitude envelopes were subsequently z-transformed across the

whole time series and sorted according to the rating of the current

pain intensity at each data point. Then, five equally large bins of data

were formed comprising the 20% of data with the lowest pain ratings

(bin 1) up to the 20% of data with the highest pain ratings (bin 5). For

each subject, relationships between EEG data and the currently per-

ceived pain intensity were then quantified per electrode and fre-

quency band using linear regressions based on the bin label (1–5) and

the averaged z-transformed amplitude in each bin. Thus, regressions

were based on five data points per electrode and frequency band. For

display purposes and statistics (see below), relationships were quanti-

fied across participants as dependent-samples regression t statistics

by dividing the mean regression coefficients by their standard errors

(Litvak et al., 2007; Lorch & Myers, 1990). To investigate the effect of

equalizing pain rating variations across subjects, the analysis was also

performed without z-transformation.

Since many patients showed a slow increase of pain in the sponta-

neous pain condition over the course of the experiment (Figure 1) and

mean pain ratings significantly increased over time (see below), we

performed two further analyses investigating the contribution of time

to our observed results. First, we repeated the electrode space analy-

sis separately for the first and last 4.5 min of the analyzed time win-

dow. Second, we included time as a covariate in our analysis. The

latency since the beginning of the recording was averaged for each of

the five bins and included as additional predictor in all regressions.

2.5.2 | Frequency resolved analysis

To show the frequency spectrum of the relationship between brain

activity and perceived pain intensity in the spontaneous pain condition,

an additional analysis was performed. This analysis focused on the
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fronto-central electrode Fz, which was part of the significant cluster

in the electrode space analysis. Matching the moving average

approach from the previous analysis, preprocessed EEG data at elec-

trode Fz were segmented into 1 s segments with 90% overlap. After

applying a Hanning taper, power was estimated for frequencies

between 1 and 100 Hz in steps of 1 Hz for each segment using the

Fast Fourier Transform (FFT). Subsequently, the power was z-

transformed across all segments for each frequency. Average pain rat-

ings of all 1 s segments were used to sort the power spectra into five

equally large bins. These power spectra were then again averaged

over the segments, resulting in a single power spectrum for each bin.

Last, to quantify the frequency resolved relationships between brain

activity and pain ratings across participants, dependent-samples

regression t-values were computed again, now calculating linear

regression coefficients between bin labels and power averages for

each 1-Hz-frequency step and then dividing their means by the stan-

dard errors across participants. Please note that this analysis was only

performed for visualizing the frequency spectrum of the relationships

between ongoing pain and neuronal oscillations without repeating sta-

tistical group analysis.

2.5.3 | Trend analysis

To confirm that our linear regression approach captured the prevailing

type of relationship between ongoing pain and neuronal oscillations,

we additionally performed a trend analysis at electrode Fz for the

spontaneous pain condition. This analysis was performed for the

gamma frequency band only, which was the only frequency band

showing a significant relationship with ongoing pain in the previous

electrode space analysis. Again, we averaged z-transformed gamma

activity in the five bins based on pain ratings and then performed a

repeated measures analysis of variance (ANOVA) with subsequent

trend analysis.

2.5.4 | Source level analysis

In the next step, relationships between ongoing pain intensity and

brain activity were quantified on source level. Source analysis maps

EEG signals to the brain and has been shown to reduce muscle and

ocular artifacts (Hipp & Siegel, 2013; Muthukumaraswamy, 2013). In

line with the electrode level analysis, source analysis was performed

for theta, alpha, beta, and gamma frequency bands. Using linearly con-

strained minimum variance (LCMV) beamforming (Van Veen, van

Drongelen, Yuchtman, & Suzuki, 1997), band-pass filtered data in each

frequency band were projected from electrode to source space for

each subject. Individual spatial filters were computed based on the

average covariance matrices across nonoverlapping 1 s segments of

the preprocessed and band-pass filtered data of all pain rating bins

and a regularly spaced 3D grid with a 1 cm resolution. The leadfield

was computed for each voxel using a realistically shaped three-shell

boundary-element volume conduction model based on the template

Montreal Neurological Institute (MNI) brain. A regularization parame-

ter of 5% was used and the dominant dipole orientation was chosen.

By projecting EEG data through the spatial filter, time courses of neu-

ronal activity per frequency band were obtained for each voxel, which

were then analyzed in parallel to the electrode level analysis. For each

voxel, the amplitude envelope was computed using the Hilbert trans-

form. This envelope was then downsampled using the moving average

and z-transformed across the whole time series. Average amplitudes

within five equally large data bins based on the sorted pain ratings

was calculated for each voxel and linear regression coefficients

between average amplitudes and bin labels were computed per sub-

ject and then summarized across participants using dependent-

samples regression t statistics.

2.6 | Control analyses

2.6.1 | Visual control condition

A first control analysis was performed using the visual control condi-

tion. To ensure that our results could not be explained by the rating

procedure, we repeated both the whole electrode and the source

space analysis performed for the spontaneous pain condition using

data from the visual control condition. Here, ratings represented the

continuously estimated length of the visually presented red bar

instead of the currently perceived pain intensity. Based on these rat-

ings, linear regressions with brain activity in theta, alpha, beta, and

gamma frequency bands were again calculated for each electrode/

voxel. The resulting coefficients were statistically tested for the visual

control condition and contrasted with the corresponding coefficients

from the spontaneous pain condition (see below). For a visualization of

the frequency spectrum of relationships up to 100 Hz, the frequency-

resolved analysis at electrode Fz was also repeated for the visual con-

trol condition. Data from the visual control condition of one subject

were not available due to technical difficulties during the recording.

Thus, data from this subject were excluded from all analyses involving

the visual control condition.

2.6.2 | Muscle activity

Further control analyses focused on possible confounds of gamma

oscillations by muscle activity (Hipp & Siegel, 2013; Muthukumaras-

wamy, 2013). By applying a thorough artifact rejection using indepen-

dent component analysis and beamformer-based source localization,

our analysis followed recent recommendations aiming to reduce

potential confounding influences of muscle artifacts on estimates of

high-frequency brain activity (Hipp & Siegel, 2013; Muthukumaras-

wamy, 2013). Additionally, it has been suggested to simultaneously

record activity from EMG electrodes and subject these to the same

analysis as the main signal of interest to show that effects of interest

are restricted to the signal of interest and not found for EMG data

(Gross et al., 2013). Thus, we subjected data from both neck and mas-

seter EMG electrodes to the same analysis as the EEG electrodes by

computing linear regressions between the average activity in the

gamma frequency band and bin orders based on the sorted pain rat-

ings for the spontaneous pain condition and performing equivalent sta-

tistics (see below).

In addition, we performed an analysis of data rejected as artifact

components after independent component analysis during preproces-

sing. As these artifact components likely include significant muscle

activity, we were interested to know whether we would observe simi-

lar relationships between these data and pain intensity as found for

artifact-cleaned data. The same preprocessing pipeline as before was
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used but now, all independent components previously classified as

clean were subtracted from the raw, unfiltered EEG data, retaining

only data based on independent components classified as artifact con-

taminated. Source analysis of relationships between pain ratings in

the spontaneous pain condition and activity in the gamma frequency

band was then repeated and, as before, relationships between pain

ratings and gamma amplitudes were quantified and statistically tested.

Last, we recomputed our electrode space analysis using a surface

Laplacian referencing scheme instead of the previously used average

referencing approach. Based on weighted referencing according to

interelectrode distances, the surface Laplacian aims at attenuating low

spatial frequency components in the data and improving topographi-

cal localization and has been suggested as a tool to reduce EMG con-

tamination (Fitzgibbon et al., 2013; Fitzgibbon et al., 2015). After

preprocessing and before further analysis, Laplacian rereferencing was

performed using the spherical spline method (Perrin, Pernier, Ber-

trand, & Echallier, 1989) and analyses quantifying relationships

between ratings and brain activity in the different frequency bands

were repeated.

2.6.3 | Medication

To investigate a potential link between our observed effects and the

patient's medication, we used the medication quantification score

(MQS) of every patient (see Table 1), which summarizes pain-related

medications depending on their dosage and their potential to cause

adverse effects (Harden et al., 2005). Using linear regressions, these

scores were related to single subject beta values quantifying the

strength of the relationship between ongoing pain and gamma power

at electrode Fz in the spontaneous pain condition (see Table 2).

2.7 | Statistical analysis

With the exception of the trend analysis (see below), the same general

nonparametric (cluster-based) permutation approach (Maris, 2012;

Maris & Oostenveld, 2007) based on a dependent-samples regression

t statistic (Litvak et al., 2007; Lorch & Myers, 1990) was used with

slight adaptations to statistically test relationships of ratings with fre-

quency band specific activity for EEG and EMG data on electrode and

source level. The applied cluster-based procedure deals with the mul-

tiple comparison problem and is not affected by partial dependence in

the data (Maris & Oostenveld, 2007). All statistical tests were two-

sided with a significance level of .05.

For the statistical analysis of the spontaneous pain and visual con-

trol condition on electrode level, dependent-samples regression

t statistics quantifying the relations between ratings and brain activity

were computed as described above. Next, statistical significance was

evaluated using cluster-based permutation statistics. Clusters of

neighboring electrodes, whose t statistic exceeded a critical threshold

of p = .05, were selected and t values within each cluster were

summed up, resulting in cluster-level test statistics. The maximum

cluster-level test statistic was then compared to a reference distribu-

tion of maximum cluster t value sums obtained by randomly inter-

changing the bin labels and recalculating the cluster-level test statistic

1,000 times. This comparison resulted in a p value per condition and

frequency band, which was given by the proportion of permutations

in which the maximum cluster-level test statistic exceeded the actually

observed maximum cluster-level test statistic in the data. For the anal-

ysis of relations between ratings and brain activity in the different fre-

quency bands on source level, the same procedure was used, but

clusters were formed across voxels instead of electrodes.
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FIGURE 1 Single-subject spontaneous pain ratings. Individual pain ratings are shown for the analyzed time window. Pain intensity was

continuously rated on a visual analogue scale anchored at no pain and worst imaginable pain. Ratings were smoothed using a moving average with
a window length of 1 s and a step size of 0.1 s. Ratings were subsequently z-transformed to account for varying strength of pain rating
fluctuations across participants.
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In addition, to directly compare the relationships of ratings with

brain activity between the spontaneous pain and visual control condi-

tions on both electrode and source level, the single subject regression

coefficients obtained from both conditions were contrasted for each

frequency band by computing dependent-samples t tests comparing

the individual regression coefficients between the two conditions.

Cluster-level test statistics were again calculated based on the sum of

t values in clusters of neighboring electrodes/voxels, whose t-statistic

exceeded a critical threshold of p = .05. For each frequency band, the

reference distribution for the maximum cluster-level test statistic was

here obtained by swapping the single subject regression coefficients

from the spontaneous pain and visual control condition for a random

subset of n = 30 subjects and recalculating the cluster-level test statis-

tic 1,000 times instead of randomly interchanging bin labels.

Last, the same statistical approach was used for the control ana-

lyses of muscle activity. For the two EMG electrodes, the same per-

mutation analysis as for the single condition electrode level was used,

comparing the original dependent-samples regression t statistics with

a distribution of dependent-samples regression t values obtained after

randomly permuting the bin labels 1,000 times. As only a single elec-

trode was investigated at a time, the test statistic was now based on

the single electrode t statistic instead of cluster t-value sums. For a

comparison of the obtained t and p values of both neck and masseter

electrodes with those of an exemplary single EEG electrode, the same

analysis was also performed for the fronto-central EEG electrode

Fz. Finally, relations between ratings and activity in the gamma fre-

quency band for the part of the data of the spontaneous pain condition

previously rejected as artifact contaminated were statistically tested

using the same source level statistical approach described for the anal-

ysis of the cleaned data.

Finally, the type of relationship between ongoing pain and gamma

activity in the spontaneous pain condition was analyzed at electrode

Fz using repeated measures ANOVA with subsequent standard trend

analysis as implemented in SPSS. The five pain rating bins were used

as within-subject factor for the repeated measures ANOVA, which

was followed by tests for linear, quadratic, cubic, and quartic trends.

3 | RESULTS

3.1 | Behavioral data

Figure 1 shows the time courses of chronic back pain intensity ratings

in the spontaneous pain condition for all participants. In line with previ-

ous studies ((Baliki et al., 2006; Baliki et al., 2011; Foss, Apkarian, &

Chialvo, 2006), behavioral data showed spontaneous fluctuations of

ongoing pain over the course of the experiment. Because the strength

of these fluctuations varied between patients, ratings were z-

transformed for each subject. Based on the visual analogue scale

anchored at no pain (0) and worst imaginable pain (100) and the original

units, mean pain intensity averaged across the analyzed time window

and then across participants was 41 � 21 (mean � standard devia-

tion). Pain ratings significantly increased over the course of the experi-

ment (mean (� standard deviation) pain ratings first half: 39 (� 20),

second half: 43 (� 24); dependent-samples t test: T(30) = 2.80,

p = .009). The mean current pain intensity rated immediately before

the experiment was 52 � 16, the mean chronic pain duration 11 � 9

years. Please see Table 1 for detailed patient characteristics and

results from questionnaires.

3.2 | Neurophysiological representation of ongoing
back pain intensity

We first investigated how neuronal activity in different frequency

bands reflects ongoing pain intensity on electrode level. Please see

Supporting Information, Figure S1 for topographies of raw amplitudes

in the different frequency bands and raw power spectra of brain activ-

ity at electrode Fz. Using five data bins sorted by pain intensity, we

calculated linear regressions quantifying the relationships between

the continuously rated current back pain intensity and the amplitude

of brain activity in each frequency band for each electrode in the

TABLE 2 Single-subject data quantifying the relationship between

ongoing pain intensity and gamma oscillations in the spontaneous pain
condition at electrode Fz

Subject Beta SE p value R2

1 .07 .09 .51 .16

2 −.02 .17 .92 .00

3 .23 .04 .01 .92

4 .19 .07 .07 .72

5 .02 .01 .15 .55

6 .12 .07 .19 .49

7 .21 .07 .05 .76

8 .00 .03 .89 .01

9 .08 .03 .08 .69

10 −.05 .05 .41 .23

11 −.02 .01 .25 .40

12 −.03 .07 .68 .07

13 .10 .07 .23 .43

4 .19 .06 .04 .79

15 .23 .03 0.00 .96

16 .14 .15 0.42 .23

17 −.09 .03 0.07 .71

18 .11 .07 0.18 .50

19 −.15 .06 0.08 .70

20 −.03 .04 0.48 .18

21 .39 .08 0.01 .90

22 .09 .06 0.24 .42

23 .24 .03 .00 .95

24 .04 .04 .45 .20

25 −.05 .05 .39 .25

26 −.04 .10 .72 .05

27 .30 .10 .05 .76

28 .04 .03 .25 .41

29 .12 .06 .13 .59

30 −.01 .05 .91 .00

31 .18 .13 .27 .38

Mean .08 .06

Beta = linear regression coefficient; R2 = explained variance; SE = standard
error.
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spontaneous pain condition. Regression coefficients were statistically

tested using cluster based permutation statistics, resulting in electrode

level t value maps for each frequency band, which are shown in

Figure 2a (upper row). The analysis revealed a significant cluster of

positive relationships between pain ratings and gamma power at fron-

tal electrodes (p = .005, marked by black circles). Thus, higher pain rat-

ings were associated with stronger frontal gamma oscillations. Table 2

shows the single-subject regression coefficients, standard errors,

p values, and estimates of the explained variance for the frontal elec-

trode Fz. No significant relationships were observed between pain rat-

ings and brain activity in theta, alpha, or beta frequency bands (p > .05

for all clusters, two-sided). An analysis without previous z-

transformation of ratings and EEG data showed the same pattern,

confirming a significant frontal gamma effect in the spontaneous pain

condition only (data not shown). A frequency resolved analysis of the

relationship between brain activity and ongoing pain intensity con-

firmed that the strongest relations were found above 30 Hz in the

gamma frequency range (Figure 2b) with a peak at 70 Hz. Further ana-

lyses up to 200 Hz indicated that differences between the conditions

continued in higher frequencies but strongest relationships were

found below 100 Hz (data not shown). As can be seen in Figure 3, a

trend analysis at electrode Fz confirmed a significant linear relation-

ship between ongoing pain and gamma activity (repeated measures

ANOVA: F[3, 80] = 7.23, p < .001; linear trend: F[1, 30] = 13.62,

p = .001) but did not show evidence for a quadratic, cubic or quartic

relation (quadratic: F(1, 30) = 1.13, p = .30; cubic: F(1, 30) = .11, p = .74;

quartic: F(1, 30) = .48, p = .49).

Two further analyses revealed a contribution of time to the

observed relationship between gamma activity and pain (Supporting

Information, Figure S2). A split half analysis of the first and second

4.5 min of the analyzed time window revealed a significant cluster of

positive relationships between pain ratings and gamma power at fron-

tal electrodes for the first half of the spontaneous pain condition only

but not for the second half or the visual control condition. Quantifying

relationships between ratings and gamma power controlling for time,

no significant clusters of relationships between ratings and gamma

power were found. Together with the significant pain rating increase

across the experiment, these analyses suggest that the positive rela-

tionship between pain ratings and frontal gamma power was coupled

to a slow increase of pain ratings and gamma power over the course

of the recording session (Figure 1).

In the next step, we determined where the significant relation-

ships between pain ratings and gamma oscillations were localized in

the brain. Using LCMV-based source analysis, time courses of fre-

quency band specific activity in the spontaneous pain condition were

projected from electrode to source level and linear regressions and

statistical analyses were repeated on voxel level (Figure 4, upper row).

This analyses revealed significant clusters of positive relationships

between ongoing pain and beta (p = .024) as well as gamma oscilla-

tions (p = .008). Both clusters had a similar shape covering bilateral

frontal and prefrontal brain areas. Please see Supporting Information,

Figure S3 for additional views of the relationships in the gamma band.

No significant relationships were observed for brain activity in theta

and alpha frequency bands.
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FIGURE 2 Relationships between ongoing pain intensity and neuronal oscillations on electrode level. (a) Electrode level t maps of the

relationship between ratings during the spontaneous pain and visual control condition and brain activity as assessed by linear regressions for theta
(4–7 Hz), alpha (8–13 Hz), beta (14–29 Hz), and gamma (60–90 Hz) frequencies. Scaling reflects t values resulting from nonparametric cluster-
based permutation tests. Positive and negative relationships are reflected by warm and cold colors, respectively. Electrodes within significant
clusters are marked. n.s., not significant; **p < .01 (two-sided). (b) The right panel descriptively displays the frequency spectrum of the
relationship between pain intensity and brain activity in the spontaneous pain and visual control condition for electrode Fz, which is highlighted in
the topography in the left panel. Again, t values are shown. Frequency bands used in all analyses are marked. The strongest (positive) relationship
was observed at 70 Hz. Relationships between 45 and 55 Hz, which are contaminated by line noise artifacts, are masked. [Color figure can be
viewed at wileyonlinelibrary.com]
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3.3 | Control analyses

To control for activity related to the continuous rating procedure such

as visual-motor performance, magnitude estimation, and anticipation

(Baliki et al., 2011; Hashmi et al., 2013; Nickel et al., 2017), we per-

formed a visual control condition asking participants to continuously

rate the length of a visual bar instead of the ongoing pain intensity.

Unknown to the subject, the bar length replayed the time course of

the individual pain rating from the spontaneous pain condition. Using

this rating and corresponding EEG data, both electrode and source

level analyses of the relationships between rating and brain activity

were repeated. In contrast to the results from the spontaneous pain

condition, no significant relationships were observed for theta, alpha,

beta, or gamma frequency bands on electrode (Figure 2a, lower row)

or source level (Figure 4, lower row) in the visual control condition (all

p > .05, two-sided). The direct statistical contrast of regression coeffi-

cients from both conditions on electrode or source level did not reveal

significant differences in any frequency band (all p > .05, two-sided).

To control for possible confounds by muscle activity, we con-

ducted three additional analyses. First, analyses of the relationship

between pain ratings and gamma activity at EMG electrodes attached

to the neck and masseters muscles were performed. No significant

associations were found (p > .05, two-sided, Figure 5a). Second,

source level relationships between activity in the gamma frequency

band and pain ratings were repeated for that part of the data previ-

ously rejected as artifacts. No significant relationships between

gamma amplitudes and pain ratings were found (p > .05, two-sided,

Figure 5b). Third, electrode space analyses were repeated based on a

surface Laplacian referencing scheme (Supporting Information,

Figure S4). In addition to a significant cluster of positive relationships

of ratings in the spontaneous pain condition to frontal gamma power

(p = .013, two-sided), this approach also revealed a cluster of positive

relationships to frontal beta power (p < .001, two-sided). Thus, poten-

tially better controlling for EMG contamination than the original aver-

age referencing approach (Fitzgibbon et al., 2013; Fitzgibbon et al.,

2015), this analysis confirmed our previous findings.

Last, we investigated a potential link between the strength of

relationship between pain ratings and gamma power at Fz and the

patients' medication measured by the medication quantification

scores (MQS). Linear regressions did not show a significant relation

between the two (ß = 0.002, p = .45). This analysis did therefore not

provide evidence for a confounding effect of medication on the

observed relationships.
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FIGURE 4 Relationships between ongoing pain intensity and neuronal oscillations on source level. Source-level t maps of the relationship

between ratings during the spontaneous pain and visual control condition and brain activity as assessed by linear regressions for theta (4–7 Hz),
alpha (8–13 Hz), beta (14–29 Hz), and gamma (60–90 Hz) frequencies. As in the previous figure, scaling reflects t values resulting from
nonparametric cluster-based permutation tests and positive and negative relationships are reflected by warm and cold colors, respectively. In
plots showing significant relationships, areas outside of significant clusters are masked. in plots without significant effects, opacity is reduced. n.s.,

not significant; *p < .05 (two-sided), **p < .01 (two-sided). [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Trend analysis of the relationship between ongoing pain

intensity and neuronal oscillations in the gamma frequency band. Box
plots of individual, z-transformed gamma activity at electrode Fz in
the spontaneous pain condition are shown, sorted into five bins based
on pain ratings. Gamma activity increased with increasing pain. A
repeated measures ANOVA revealed a significant main effect of the
bin number (F(3, 80) = 7.23, p < .001). A subsequent trend analysis
showed a significant linear trend (F(1, 30) = 13.62, p = .001), while
quadratic, cubic, and quartic trends were not significant (quadratic:
F(1, 30) = 1.13, p = .30; cubic: F(1, 30) = .11, p = .74; quartic:
F(1, 30) = .48, p = .49). rmANOVA, repeated measures analysis of
variance.
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4 | DISCUSSION

This study investigated the neurophysiological representation of

ongoing pain in chronic back pain patients. Continuous pain ratings

confirmed spontaneous fluctuations of ongoing pain already within

minutes. EEG data revealed a positive association between ongoing

pain intensity and the amplitude of prefrontal beta and gamma oscilla-

tions, which have been related to the perception of longer lasting

experimental pain (Nickel et al., 2017; Schulz et al., 2015). In contrast,

no significant relationship between neuronal alpha and beta oscilla-

tions in sensorimotor areas were found, which have been related to

the processing of nociceptive information (Nickel et al., 2017; Schulz

et al., 2015). These findings provide physiological support for a disso-

ciation of ongoing pain from nociceptive processes in chronic pain

(Baliki & Apkarian, 2015). Moreover, they hint at prefrontal gamma

oscillations as a potential neurophysiological marker of ongoing pain

as the key symptom of chronic pain.

A role of prefrontal areas in the encoding of ongoing pain is in line

with results from previous fMRI studies investigating different chronic

pain populations (Baliki et al., 2006; Baliki et al., 2011; Geha et al.,

2007; Hashmi et al., 2013; Parks et al., 2011). Furthermore, fronto-

striatal circuits and the prefrontal cortex have been implicated in the

estimation of subjective value (Clithero & Rangel, 2014; Grabenhorst &

Rolls, 2011) and affective meaning (Roy, Shohamy, & Wager, 2012)

across different stimuli, tasks, and modalities. Moreover, changes of

these circuits are often observed in neuropsychiatric disorders, which

are associated with a negative emotional state (Kaiser, Andrews-

Hanna, Wager, & Pizzagalli, 2015; Russo & Nestler, 2013). Psychiatric

disorders such as depression and chronic pain frequently co-occur

(Velly & Mohit, 2018) and 19 out of 31 of our participants also

showed depression scores in line with at least mild to moderate

depression (Table 1). Altogether, a role of prefrontal areas in the

encoding of ongoing pain fits well with previous findings and points to

an important function of emotional-evaluative rather than primary

sensory neural circuits in chronic pain.

The relationship of ongoing pain intensity to neuronal oscillations

at gamma frequencies corresponds to results from previous studies,

which showed a representation of the intensity of ongoing experi-

mental pain by prefrontal gamma oscillations in healthy participants

(Nickel et al., 2017; Schulz et al., 2015). Gamma band oscillations are

found in many different brain areas and have been associated with a

broad range of cognitive and behavioral functions including object

representation, memory, and attention (Donner & Siegel, 2011; Fries,

2015; Wang, 2010). Thus, they likely represent a basic feature of neu-

ronal signaling and communication (Donner & Siegel, 2011; Fries,

2015; Wang, 2010). Gamma oscillations appear to be particularly

related to feedforward communication and the transmission of cur-

rently important stimuli (Donner & Siegel, 2011; Fries, 2015; Ploner,

Sorg, & Gross, 2017). These concepts would be in line with a positive

association of ongoing pain intensity with gamma oscillations. We also

found a positive relationship of ongoing pain intensity and frontal beta

oscillations. However, the topography of this relationship was similar

to that between pain intensity and gamma oscillations. Moreover, the

frequency spectrum of the relationships between pain intensity and

brain activity shows strongest effects at gamma frequencies. It is

therefore likely that the relationships between pain intensity and neu-

ronal oscillations at gamma and beta oscillations essentially represent

similar underlying mechanisms.

The potential use of oscillations as biomarkers in clinical studies

has previously been discussed (Basar & Guntekin, 2013) and oscilla-

tions represent a promising target for clinical interventions such as

neurofeedback and neurostimulation (Jensen et al., 2014; Sitaram

et al., 2017; Thut et al., 2017). In comparison to markers reflecting

persistent changes of brain function in chronic pain, a neurophysiolog-

ical marker reflecting the dynamics of ongoing pain intensity would be

of particular interest in this respect. However, due to their small

amplitude and potential confounding artifacts in noninvasive record-

ings, the signal-to-noise ratio of high-frequency oscillations is compa-

rably low, challenging the precise quantification on the individual

subject level. Future studies will thus need to show whether prefron-

tal gamma oscillations can be used as a diagnostic marker of ongoing
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FIGURE 5 Control analyses of muscle activity. (a) Relationships

between pain ratings and activity in the gamma frequency band
(60–90 Hz) in the spontaneous pain condition are shown for the
exemplary fronto-central EEG electrode Fz (see left panel in
Figure 2b) and two EMG electrodes placed on the right masseter and
neck muscles. As in previous figures, t values resulting from
nonparametric cluster-based permutation tests based on linear
regressions are shown. EEG, electroencephalography, EMG,
electromyography, n.s., not significant; ***p < .001. (b) Source-level
t map of the relationship between ratings during the spontaneous pain
condition and data reconstructed from independent components,
which were classified as artifact-contaminated during preprocessing.
Relationships based on linear regressions are shown for the gamma
frequency band (60–90 Hz). As in previous figures, scaling reflects
t values resulting from nonparametric cluster-based permutation
tests, positive and negative relationships are reflected by warm and
cold colors, respectively, and opacity is reduced as no significant
effects were found. n.s., not significant. [Color figure can be viewed
at wileyonlinelibrary.com]
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pain intensity and whether the targeted reduction of gamma oscilla-

tions can be used to reduce ongoing pain.

In previous studies investigating ongoing experimental pain in

healthy humans, we found a significant relationship between objective

stimulus intensity and neuronal oscillations over primary sensorimotor

areas (Nickel et al., 2017; Schulz et al., 2015). In this study, we did not

observe similar relationships suggesting that ongoing pain intensity

can dissociate from nociceptive processes in chronic pain patients.

However, this does not preclude a relevance of sensory information

for ongoing pain in chronic pain, which might not be detectable using

the current EEG approach.

Muscle activity represents an important confound of high fre-

quency activity recorded by EEG (Hipp & Siegel, 2013; Muthukumar-

aswamy, 2013). Separation of brain activity from muscle activity is

particularly challenging as the topography, frequency, and amplitude

of muscle artifacts differ across participants, muscles, and the direc-

tion and force of contraction (Goncharova, McFarland, Vaughan, &

Wolpaw, 2003; Kumar, Narayan, & Amell, 2003; O'Donnell, Berkh-

out, & Adey, 1974; Yuval-Greenberg, Tomer, Keren, Nelken, &

Deouell, 2008). Thus, it is not possible to define a single, clear crite-

rion for disentangling brain activity from muscle activity. Instead, the

separation of brain activity and muscle activity can only depend on a

mosaic of evidence from careful artifact rejection procedures

(e.g., ICA-based), analysis strategies (e.g., source space, Laplacian), and

control analyses (e.g., analysis of EMG electrodes) (Gross et al., 2013;

Muthukumaraswamy, 2013). We performed artifact correction

according to recent guidelines (Hipp & Siegel, 2013; Muthukumaras-

wamy, 2013), did not find significant relationships between gamma

amplitudes of two EMG electrodes as well as artifact-dominated data

and ongoing pain (Gross et al., 2013), and confirmed our findings using

a surface Laplacian referencing scheme. However, no method can

guarantee data free of high-frequency artifacts (Muthukumaraswamy,

2013) and even additional EMG electrodes closer to the forehead

would likely pick up activity from both muscle and brain. Thus, we

cannot ultimately rule out muscle confounds in this study.

Some further limitations have to be considered in relation to the

interpretation of the present findings. First, significant relationships

between neuronal oscillations and ratings were found for the sponta-

neous pain but not for the visual control condition. However, the direct

contrast of the two conditions was not significant. A potential expla-

nation could be the slow increase of pain levels in the spontaneous

pain condition over the course of the experiment. In the visual control

condition, the pain ratings from the spontaneous pain condition were

replayed. Assuming that some patients again experienced a slow

increase of pain during the visual control condition, that is, while they

were seated and could not move freely, pain and ratings in the visual

control condition might have again co-varied so that part of the effects

in the visual control condition might eventually reflect relationships

between gamma oscillations and ongoing pain. This would not pre-

clude true gamma-pain relations but limit the power of the condition

contrast. Second, further analyses indicated a significant contribution

of time and slow increases of pain during the recordings to the

observed relationships between pain ratings and frontal gamma power

(Supporting Information, Figure S2). Considering that patients were

asked to sit as still as possible, this steady increase of pain and the

resulting time confound seems plausible. Again, this does not argue

against true gamma-pain relationships but indicates that the slow

increase rather than faster pain fluctuations largely carried the effect.

Third, brain activity might always also encode other aspects, which

co-vary with perceived pain such as unpleasantness, salience, or

changes in the attentional state. Albeit the standard in previous similar

studies (Baliki et al., 2011; Hashmi et al., 2013; Nickel et al., 2017),

the task in the visual control condition clearly differed from the sponta-

neous pain condition asking patients to rate a visual stimulus rather

than an internal state. Developing a control condition in which

patients monitor another ongoing, ideally equally salient and also

internal sensation would be highly desirable. Moreover, our results do

not necessarily generalize to other recording conditions, for example,

with eyes closed, and we cannot completely rule out effects due to

the fixed order of our two conditions. For example, task difficulty

might have decreased over time, resulting in a higher working memory

load earlier on in the experiment. Fourth, the relation between gamma

oscillations and pain intensity was not focal but wide-spread, espe-

cially in source space. Thus, no strong claims about the exact location

are possible. However, the analyses localized the relation to prefrontal

areas and thus beyond primary sensorimotor areas, which are impli-

cated in the encoding of phasic pain and nociceptive stimulus input

(Nickel et al., 2017; Schulz et al., 2015). Last, further studies need to

investigate if ongoing pain in other chronic pain conditions is also

reflected by prefrontal gamma oscillations. Previous fMRI studies have

shown an involvement of comparable brain regions in the representa-

tion of spontaneous pain across distinct pain populations (Baliki et al.,

2011; Geha et al., 2007; Hashmi et al., 2013; Parks et al., 2011), mak-

ing similar underlying mechanisms plausible.

5 | CONCLUSIONS

Taken together, the current results indicate that prefrontal gamma

oscillations reflect the intensity of ongoing pain in chronic back pain

patients. Thus, they reveal a potential neurophysiological marker of

ongoing pain, which could be measured relatively easily using EEG as

a noninvasive and broadly available clinical tool. They are furthermore

in line with a role of emotional-evaluative circuits rather than sensory

circuits in ongoing pain, emphasizing the emotional aspects of the

chronic pain experience. Future studies need to take potential muscle

confounds into account, but might investigate the potential of pre-

frontal gamma activity as a marker of ongoing pain for the diagnosis

and treatment of chronic pain (Davis et al., 2017), especially in the

context of neurofeedback and neurostimulation treatment approaches

(Jensen et al., 2014; Sitaram et al., 2017; Thut et al., 2017).
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