632 research outputs found

    Exciton condensate at a total filling factor of 1 in Corbino 2D electron bilayers

    Full text link
    Magneto-transport and drag measurements on a quasi-Corbino 2D electron bilayer at the systems total filling factor 1 (v_tot=1) reveal a drag voltage that is equal in magnitude to the drive voltage as soon as the two layers begin to form the expected v_tot=1 exciton condensate. The identity of both voltages remains present even at elevated temperatures of 0.25 K. The conductance in the current carrying layer vanishes only in the limit of strong coupling between the two layers and at T->0 K which suggests the presence of an excitonic circular current

    Adsorption of Toxic Metal Ions From Solution by Inactivated Cells of Larrea Tridentata Creosote Bush

    Get PDF
    Larrea tridentata (creosote bush) is a plant that grows abundantly in the desert environment. This desert plant has been found naturally growing in heavy-metal contaminated soils. Previous experiments showed that the inactivated biomass of creosote bush was able to adsorb Cu(II) ions from aqueous solutions. The copper-binding capacity of the bush biomass that grows in heavy-metal uncontaminated soils was higher than the biomass that grows in heavy-metal contaminated soils. Experiments were performed to determine the ability of creosote bush biomass (grown in heavy metal uncontaminated soils) to adsorb Pb(II), Cd(II), Zn(II), Cr(III), Cr(VI), and Ni(II) ions from aqueous solutions. Batch pH profile experiments for these metal ions showed that the metal ion binding was different for every metal tested but increased as the pH was raised from 2.0 to 6.0. The metal ion uptake by the roots, stems, and leaves was quite fast. Binding capacity experiments showed a more significant binding capacity for lead(II) and chromium(III) ions and in general, the leaves bound more metal ions than the stems and roots. A great portion of the metal ions adsorbed by the creosote’s roots, stems, and leaves was desorbed by treatment with 0.1 M HCl (up to 99% in some cases). Biomass of creosote bush may prove to be useful to remove and recover metal ions from contaminated waters

    Exciton Condensation and Perfect Coulomb Drag

    Get PDF
    Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, bilayer two-dimensional electron systems can support an exciton condensate consisting of electrons in one layer tightly bound to holes in the other. One thus expects "perfect" drag; a transport current of electrons driven through one layer is accompanied by an equal one of holes in the other. (The electrical currents are therefore opposite in sign.) Here we demonstrate just this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure

    Feshbach spectroscopy and scattering properties of ultracold Li+Na mixtures

    Get PDF
    We have observed 26 interspecies Feshbach resonances at fields up to 2050 G in ultracold 6^6Li+23^{23}Na mixtures for different spin-state combinations. Applying the asymptotic bound-state model to assign the resonances, we have found that most resonances have d-wave character. This analysis serves as guidance for a coupled-channel calculation, which uses modified interaction potentials to describe the positions of the Feshbach resonances well within the experimental uncertainty and to calculate their widths. The scattering length derived from the improved interaction potentials is experimentally confirmed and deviates from previously reported values in sign and magnitude. We give prospects for 7^7Li+23^{23}Na and predict broad Feshbach resonances suitable for tuning.Comment: 8 pages, 4 figures, version as published in PR

    Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium

    Get PDF
    We have studied magnetic Feshbach resonances in an ultracold sample of Na prepared in the absolute hyperfine ground state. We report on the observation of three s-, eight d-, and three g-wave Feshbach resonances, including a more precise determination of two known s-wave resonances, and one s-wave resonance at a magnetic field exceeding 200mT. Using a coupled-channels calculation we have improved the sodium ground-state potentials by taking into account these new experimental data, and derived values for the scattering lengths. In addition, a description of the molecular states leading to the Feshbach resonances in terms of the asymptotic-bound-state model is presented.Comment: 11 pages, 4 figure

    Ability of Immobilized Cyanobacteria to Remove Metal Ions From Solution and Demonstration of the Presence of Metallothionein Genes in Various Strains

    Get PDF
    Synechococcus sp. PCC 7942 has the ability to grow in mass quantity under ideal conditions; such an ability provides usable biomass at a minimal effort. Using lyophilized biomass grown under normal conditions, Synechococcus was tested for its potential to bind metal ions from solution. Batch experiments have determined the optimum binding pH, time dependency, and metal binding capacities for copper(II), lead(II), nickel(II), cadmium(II), chromium(III), and chromium(VI), along with desorption of the metal bound. The biomass studied showed an affinity for five of the metal ions, with an optimum binding at pH 5. Time dependency studies showed that this cyanobacterium had rapid binding, while capacity experiments showed this cyanobacterial strain to bind 11.3 mg of copper(II) per gram of biomass, 30.4mg of lead(II) per gram of biomass, 3.2 mg of nickel(II) per gram of biomass, 7.2 mg of cadmium (II) per gram of biomass, and 5.4 mg of chromium (III) per gram of biomass. More than 98% of copper(II), lead(II), and nickel(II) metal ions were recovered, while over 50 % of cadmium(II) and chromium(III) were recovered when treated with 0.1M HCl. The biomass was immobilized in a silica polymer and tested for its binding ability under flow conditions. Using 0.1mM concentrations of the previously indicated metals, individual experimental results showed an average of 143 mg/L copper(II), 1456 mg/L lead(II), 142 mg/L nickel(II), and 529 mg/L cadmium(II) bound by the immobilized biomass. Treatment with 0.2M HCl resulted in nearly 100% recovery for both copper(II) and lead(II) from the column, 79% recovery of cadmium(II), while recovery for nickel(II) was 42%. Experiments were conducted to determine if many cycles of metal binding- stripping by the immobilized biomass were possible. Further, attempts were made to demonstrate the presence of metallothioneins in various strains of cyanobacteria which may serve as defense mechanisms against metal ion toxicity. Such proteins may be used to develop engineered strains of cyanobacteria with increased metal ion binding ability. Synechococcus can eventually be used as a source for a novel approach in using biosystems to remediate contaminants from solution and making those contaminants available to industry through an environmentally friendly biofiltration system

    Binding of Silver(I) Ions by Alfalfa Biomass (Medicago Sativa): Batch PH, Time, Temperature, and Ionic Strength Studies

    Get PDF
    In this study, the use of alfalfa biomass as a cost-effective and environmentally safe technique to recover Ag(I) ions from aqueous solutions is reported. This investigation consisted of batch pH profile, time, temperature, and ionic strength dependence studies. Results showed that alfalfa biomass presented the highest adsorption of Ag(I) ions in the pH range of 7 to 9 with a maximum adsorption capacity of 27.37 mg Ag•g-1 of dry biomass, evaluated with a solution of 32.4 ppm of Ag(I). Time and temperature studies demonstrated a stable adsorption of Ag(I) ions by the biomass during the first hour of exposure, with a small decrease in adsorption after this period. Temperature experiments showed that Ag(I) adsorption decreases significantly at 50 ºC as compared to 4ºC and 24 ºC. However, the differences between 4ºC and 24ºC are small. Ionic strength experiments showed that interfering ions (Na and Ca) reduce the adsorption capacity of the biomass. Results of this investigation showed that alfalfa biomass can be effectively used in the recovery process of silver ions from aqueous solutions

    Resonance phenomena in ultracold dipole-dipole scattering

    Full text link
    Elastic scattering resonances occurring in ultracold collisions of either bosonic or fermionic polar molecules are investigated. The Born-Oppenheimer adiabatic representation of the two-bodydynamics provides both a qualitative classification scheme and a quantitative WKB quantization condition that predicts several sequences of resonant states. It is found that the near-threshold energy dependence of ultracold collision cross sections varies significantly with the particle exchange symmetry, with bosonic systems showing much smoother energy variations than their fermionic counterparts. Resonant variations of the angular distributions in ultracold collisions are also described.Comment: 19 pages, 6 figures, revtex4, submitted to J. Phys.

    Theoretical study of the absorption spectra of the sodium dimer

    Full text link
    Absorption of radiation from the sodium dimer molecular states correlating to Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum transitions from the singlet X Sigma-g+ state to the first excited singlet A Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the first excited triplet b Sigma-g+ and triplet c Pi-g states are studied quantum-mechanically. Theoretical and experimental data are used to characterize the molecular properties taking advantage of knowledge recently obtained from ab initio calculations, spectroscopy, and ultra-cold atom collision studies. The quantum-mechanical calculations are carried out for temperatures in the range from 500 to 3000 K and are compared with previous calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps

    Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management

    Get PDF
    The North Central Education and Research Activity Committee (NCERA-59) was formed in 1952 to address how soil organic matter formation and management practices affect soil structure and productivity. It is in this capacity that we comment on the science supporting soil quality and associated soil health assessment for agricultural lands with the goal of hastening progress in this important field. Even though the suite of soil quality indicators being applied by U.S. soil health efforts closely mirrors the “minimum data set” we developed and recommended in the mid-1990s, we question whether the methods or means for their selection and development are sufficient to meet current and emerging soil health challenges. The rush to enshrine a standard suite of dated measures may be incompatible with longer-term goals. Legitimate study of soil health considers soil change accrued over years to decades that influence on- and off-site function. Tailoring of methods to local conditions is needed to effectively apply and interpret indicators for different soil resource regions and land uses. Adherence to a set suite of methods selected by subjective criteria should be avoided, particularly when we do not yet have adequate data or agreed upon interpretive frameworks for many so-called “Tier 1” biological indicators used in soil health assessment. While pooling data collected by producer-groups is one of the most exciting new trends in soil health, standardizing methods to meet broad inventory goals could compromise indicator use for site or application-specific problem solving. Changes in our nation’s research landscape are shifting responsibility for soil stewardship from national and state government backed entities to public-private partnerships. As a result, it is critical to ensure that the data needed to assess soil health are generated by reproducible methods selected through a transparent process, and that data are readily available for public and private sector use. Appropriate methods for engagement need to be applied by public-private research partnerships as they establish and expand coordinated research enterprises that can deliver fact-based interpretation of soil quality indicators within the type of normative soil health framework conceived by USDA over 20 years ago. We look to existing examples as we consider how to put soil health information into the hands of practitioners in a manner that protects soils’ services
    • …
    corecore