8 research outputs found

    A comparative evaluation of two algorithms of detection of masses on mammograms

    Full text link
    In this paper, we implement and carry out the comparison of two methods of computer-aided-detection of masses on mammograms. The two algorithms basically consist of 3 steps each: segmentation, binarization and noise suppression using different techniques for each step. A database of 60 images was used to compare the performance of the two algorithms in terms of general detection efficiency, conservation of size and shape of detected masses.Comment: 9 pages, 5 figures, 1 table, Vol.3, No.1, February 2012,pp19-27; Signal & Image Processing : An International Journal (SIPIJ),201

    Multiple-Image Fusion Encryption (MIFE) Using Discrete Cosine Transformation (DCT) and Pseudo Random Number Generators

    Get PDF
    This chapter proposes a new multiple-image encryption algorithm based on spectral fusion of watermarked images and new chaotic generators. Logistic-May (LM), May-Gaussian (MG), and Gaussian-Gompertz (GG) were used as chaotic generators for their good properties in order to correct the flaws of 1D chaotic maps (Logistic, May, Gaussian, Gompertz) when used individually. Firstly, the discrete cosine transformation (DCT) and the low-pass filter of appropriate sizes are used to combine the target watermarked images in the spectral domain in two different multiplex images. Secondly, each of the two images is concatenated into blocks of small size, which are mixed by changing their position following the order generated by a chaotic sequence from the Logistic-May system (LM). Finally, the fusion of both scrambled images is achieved by a nonlinear mathematical expression based on Cramer’s rule to obtain two hybrid encrypted images. Then, after the decryption step, the hidden message can be retrieved from the watermarked image without any loss. The security analysis and experimental simulations confirmed that the proposed algorithm has a good encryption performance; it can encrypt a large number of images combined with text, of different types while maintaining a reduced Mean Square Error (MSE) after decryption

    Chaos-Based Encryption of ECG Signals: Experimental Results

    No full text

    A Robust and Fast Image Encryption Scheme Based on a Mixing Technique

    No full text
    This paper introduces a new image encryption scheme using a mixing technique as a way to encrypt one or multiple images of different types and sizes. The mixing model follows a nonlinear mathematical expression based on Cramer’s rule. Two 1D systems already developed in the literature, namely, the May-Gompertz map and the piecewise linear chaotic map, were used in the mixing process as pseudo-random number generators for their good chaotic properties. The image to be encrypted was first of all partitioned into N subimages of the same size. The subimages underwent a block permutation using the May-Gompertz map. This was followed by a pixel-based permutation using the piecewise linear chaotic map. The result of the two previous permutations was divided into 4 subimages, which were then mixed using pseudo-random matrices generated from the two maps mentioned above. Tests carried out on the cryptosystem designed proved that it was fast due to the 1D maps used, robust in terms of noise and data loss, exhibited a large key space, and resisted all common attacks. A very interesting feature of the proposed cryptosystem is that it works well for simultaneous multiple-image encryption

    Passive–active integrators chaotic oscillator with anti-parallel diodes: analysis and its chaos-based encryption application to protect electrocardiogram signals

    No full text
    An autonomous passive–active integrators oscillator with anti-parallel diodes is proposed and analysed in this paper. It consists of anti-parallel diodes and two main blocks: A second-order passive RLC integrator and a first-order active RC integrator. The existence of two Hopf bifurcations is established during the stability analysis of the unique equilibrium point. For a suitable choice of the circuit parameters, the proposed oscillator can generate periodic oscillations, one-scroll, bistable chaotic attractors and antimonotonicity. The electronic circuit realization of the proposed oscillator is carried out to confirm results found during the numerical simulations. A good qualitative agreement is illustrated between the numerical simulations and experimental results. In addition, chaos-based encryption application to protect electrocardiogram (ECG) signals for secure transmission of medical information is performed using the proposed oscillator in chaotic regime. The ECG signals are successfully encrypted and the original ECG signal is successfully decrypted from noisy ECG signals

    Crustal structure beneath Cameroon from EGM2008

    Get PDF
    We used the Earth Gravitational Model (EGM2008) data sets to analyze the regional gravity anomalies and to study the underground structures in Cameroon. We first created a high-resolution Free-Air anomaly database, then corrected the gravity field of the topographic effect by using ETOPOl DEM with a resolution of 0.01° to obtain the Bouguer anomaly, then applied a multi-scale wavelet-analysis technique to separate the gravity-field components into different parts of shallow-to-deep origins, and finally used the logarithmic power spectrum technique to obtain detailed images and corresponding source depths as well as certain lateral inhomogeneity of structure density. The anomalies of shallow origin show successive elongated gravity “highs” and “lows” attributable to subsurface Tertiary and lower Cretaceous undulations. Our results are in good agreement with previous investigations
    corecore