17 research outputs found

    Mapping Water Availability, Cost and Projected Consumptive Use in the Eastern United States with Comparisons to the West

    Get PDF
    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered water rich roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resource

    What do experienced water managers think of water resources of our nation and its management infrastructure?

    Get PDF
    This article represents the second report by an ASCE Task Committee Infrastructure Impacts of Landscape-driven Weather Change under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the \u27infrastructure impacts are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC\u27s survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the form of statistical averages on the \u27perception\u27 of these managers. Finally, we discuss what these \u27perception\u27 averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community. © 2015 Hossain et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    Get PDF
    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate

    Water supply as a constraint on transmission expansion planning in the Western interconnection

    No full text
    Consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development of new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water availability constraint) and indirectly (technology or policy constraints) related to future thermoelectric water demand, as well as, the careful selection of scenarios that adequately bound the potential dimensions of water impact

    An Integrated Food, Energy, and Water Nexus, Human Well-Being, and Resilience (FEW-WISE) Framework: New Mexico

    Get PDF
    Interconnected food, energy, and water (FEW) nexus systems face many challenges to support human well-being (HWB) and maintain resilience, especially in arid and semiarid regions like New Mexico (NM), United States (US). Insufficient FEW resources, unstable economic growth due to fluctuations in prices of crude oil and natural gas, inequitable education and employment, and climate change are some of these challenges. Enhancing the resilience of such coupled socio-environmental systems depends on the efficient use of resources, improved understanding of the interlinkages across FEW system components, and adopting adaptable alternative management strategies. The goal of this study was to develop a framework that can be used to enhance the resilience of these systems. An integrated food, energy, water, well-being, and resilience (FEW-WISE) framework was developed and introduced in this study. This framework consists mainly of five steps to qualitatively and quantitatively assess FEW system relationships, identify important external drivers, integrate FEW systems using system dynamics models, develop FEW and HWB performance indices, and develop a resilience monitoring criterion using a threshold-based approach that integrates these indices. The FEW-WISE framework can be used to evaluate and predict the dynamic behavior of FEW systems in response to environmental and socioeconomic changes using resilience indicators. In conclusion, the derived resilience index can be used to inform the decision-making processes to guide the development of alternative scenario-based management strategies to enhance the resilience of ecological and socioeconomic well-being of vulnerable regions like NM

    Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

    Get PDF
    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered water rich roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resource
    corecore