622 research outputs found

    Recent Results from the MAGIC Telescopes

    Full text link
    MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov Telescope) is a system of two 17 meters Cherenkov telescopes, sensitive to very high energy (VHE; >1011> 10^{11} eV) gamma radiation above an energy threshold of 50 GeV. The first telescope was built in 2004 and operated for five years in stand-alone mode. A second MAGIC telescope (MAGIC-II), at a distance of 85 meters from the first one, started taking data in July 2009. Together they integrate the MAGIC stereoscopic system. Stereoscopic observations have improved the MAGIC sensitivity and its performance in terms of spectral and angular resolution, especially at low energies. We report on the status of the telescope system and highlight selected recent results from observations of galactic and extragalactic gamma-ray sources. The variety of sources discussed includes pulsars, galactic binary systems, clusters of galaxies, radio galaxies, quasars, BL Lacertae objects and more.Comment: Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Application

    HESS J1507-622: an unique unidentified source off the Galactic Plane

    Full text link
    Galactic very high energy (VHE, > 100 GeV) gamma ray sources in the inner Galaxy H.E.S.S. survey tend to cluster within 1 degree in latitude around the Galactic plane. HESS J1507-622 instead is unique, since it is located at latitude of ~3.5 degrees. HESS J1507-622 is slightly extended over the PSF of the instrument and hence its Galactic origin is clear. The search for counterparts in other wavelength regimes (radio, infrared and X-rays) failed to show any plausible counterparts; and given its position off the Galactic plane and hence the absorption almost one order of magnitude lower, it is very surprising to not see any counterparts especially at X-rays wavelengths (by ROSAT, XMM Newton and Chandra). Its latitude implies that it is either rather close, within about 1 kpc, or is located well off the Galactic plane. And also the models reflect the uniqueness of this object: a leptonic PWN scenario would place this source due to its quite small extension to multi-kpc distance whereas a hadronic scenario would preferentially locate this object at distances of < 1 kpc where the density of target material is higher

    New unidentified H.E.S.S. Galactic sources

    Full text link
    H.E.S.S. is one of the most sensitive instruments in the very high energy (VHE; > 100 GeV) gamma-ray domain and has revealed many new sources along the Galactic Plane. After the successful first VHE Galactic Plane Survey of 2004, H.E.S.S. has continued and extended that survey in 2005-2008, discovering a number of new sources, many of which are unidentified. Some of the unidentified H.E.S.S. sources have several positional counterparts and hence several different possible scenarios for the origin of the VHE gamma-ray emission; their identification remains unclear. Others have so far no counterparts at any other wavelength. Particularly, the lack of an X-ray counterpart puts serious constraints on emission models. Several newly discovered and still unidentified VHE sources are reported here.Comment: ICRC 2009 proceeding

    A search for VHE counterparts of Galactic Fermi bright sources and MeV to TeV spectral characterization

    Full text link
    Very high-energy (VHE; E>100 GeV) gamma-rays have been detected from a wide range of astronomical objects, such as pulsar wind nebulae (PWNe), supernova remnants (SNRs), giant molecular clouds, gamma-ray binaries, the Galactic Center, active galactic nuclei (AGN), radio galaxies, starburst galaxies, and possibly star-forming regions as well. At lower energies, observations using the Large Area Telescope (LAT) onboard Fermi provide a rich set of data which can be used to study the behavior of cosmic accelerators in the MeV to TeV energy bands. In particular, the improved angular resolution of current telescopes in both bands compared to previous instruments significantly reduces source confusion and facilitates the identification of associated counterparts at lower energies. In this paper, a comprehensive search for VHE gamma-ray sources which are spatially coincident with Galactic Fermi/LAT bright sources is performed, and the available MeV to TeV spectra of coincident sources are compared. It is found that bright LAT GeV sources are correlated with TeV sources, in contrast to previous studies using EGRET data. Moreover, a single spectral component seems unable to describe the MeV to TeV spectra of many coincident GeV/TeV sources. It has been suggested that gamma-ray pulsars may be accompanied by VHE gamma-ray emitting nebulae, a hypothesis that can be tested with VHE observations of these pulsars.Comment: Astronomy and Astrophysics, in press, 17 pages, 12 figures, 5 table

    Broadband multi-wavelength campaign on PKS 2005-489

    Full text link
    The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.Comment: 2009 Fermi Symposium; eConf Proceedings C09112

    Unidentified Galactic High-Energy Sources as Ancient Pulsar Wind Nebulae in the light of new high energy observations and the new code

    Full text link
    In a Pulsar Wind Nebula (PWN), the lifetime of inverse Compton (IC) emitting electrons exceeds the lifetime of its progenitor pulsar (as well as its shell-type remnant), but it also exceeds the age of those that emit via synchrotron radiation. Therefore, during its evolution, the PWN can remain bright in IC so that its GeV-TeV gamma-ray flux remains high for timescales much larger (for 10^5 - 10^6 yrs) than the pulsar lifetime and the X-ray PWN lifetime. In this scenario, the magnetic field in the cavity induced by the wind of the progenitor star plays a crucial role. This scenario is in line with the discovery of several unidentified or "dark" sources in the TeV gamma-ray band without X-ray counterparts; and it is also finding confirmation in the recent discoveries at GeV gamma rays. Moreover, these consequences could be also important for reinterpreting the detection of starburst galaxies in the TeV gamma-ray band when considering a leptonic origin of the gamma-ray signal. Both theoretical aspects and their observational proofs will be discussed, as well as the first results of our new modeling code.Comment: Proceedings of the 5th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2012
    corecore