10 research outputs found
Joint Token Pruning and Squeezing Towards More Aggressive Compression of Vision Transformers
Although vision transformers (ViTs) have shown promising results in various
computer vision tasks recently, their high computational cost limits their
practical applications. Previous approaches that prune redundant tokens have
demonstrated a good trade-off between performance and computation costs.
Nevertheless, errors caused by pruning strategies can lead to significant
information loss. Our quantitative experiments reveal that the impact of pruned
tokens on performance should be noticeable. To address this issue, we propose a
novel joint Token Pruning & Squeezing module (TPS) for compressing vision
transformers with higher efficiency. Firstly, TPS adopts pruning to get the
reserved and pruned subsets. Secondly, TPS squeezes the information of pruned
tokens into partial reserved tokens via the unidirectional nearest-neighbor
matching and similarity-based fusing steps. Compared to state-of-the-art
methods, our approach outperforms them under all token pruning intensities.
Especially while shrinking DeiT-tiny&small computational budgets to 35%, it
improves the accuracy by 1%-6% compared with baselines on ImageNet
classification. The proposed method can accelerate the throughput of DeiT-small
beyond DeiT-tiny, while its accuracy surpasses DeiT-tiny by 4.78%. Experiments
on various transformers demonstrate the effectiveness of our method, while
analysis experiments prove our higher robustness to the errors of the token
pruning policy. Code is available at
https://github.com/megvii-research/TPS-CVPR2023.Comment: Accepted to CVPR202
Hidden Messages: Connotation analysis of Textile Trademarks in the Republic of China (1912-1949)
This study analyses trademarks of the textile industry issued between 1912–1949 in the Republic of China, revealing the trademarks’ art features and hidden messages. The trademarks’ images and information folders were critically examined within their historical context. The work, by analysing the themes and patterns of the trademarks, revealed that the people-oriented conception, humanistic spirit, nationalist sentiment and the multiple connotations of era development were behind the trademarks, which answers questions about the social connotations of textile trademarks of the Republic of China and also gives us some guidance to understand how to use these connotations for innovation trademark design to inherit better traditional culture in the future
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity
The small molecule inhibitor of SARS-CoV-2 3CLpro EDP-235 prevents viral replication and transmission in vivo
Abstract The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses. EDP-235 maintains potency against variants bearing mutations associated with nirmatrelvir resistance. Additionally, EDP-235 demonstrates a ≥ 500-fold selectivity index against multiple host proteases. In a male Syrian hamster model of COVID-19, EDP-235 suppresses SARS-CoV-2 replication and viral-induced hamster lung pathology. In a female ferret model, EDP-235 inhibits production of SARS-CoV-2 infectious virus and RNA at multiple anatomical sites. Furthermore, SARS-CoV-2 contact transmission does not occur when naïve ferrets are co-housed with infected, EDP-235-treated ferrets. Collectively, these results demonstrate that EDP-235 is a broad-spectrum coronavirus inhibitor with efficacy in animal models of primary infection and transmission