38 research outputs found

    A comparative analysis of aerosol microphysical, optical and radiative properties during the Spring Festival holiday over Beijing and surrounding regions

    Get PDF
    Using ground-based data, meteorological observations, and atmospheric environmental monitoring data, a comparative analysis of the microphysical and optical properties, and radiative forcing of aerosols was conducted between three stations in different developed environments during a severe air pollution episode during the Spring Festival over Beijing. During the most polluted period, the daily peak values of the aerosol optical depth were ~1.62, ~1.73, and ~0.74, which were about 2.6, 2.9, and 2.1 times higher than the background levels at the CAMS, Xianghe, and Shangdianzi sites, respectively. The daily peak values of the single scattering albedo were ~0.95, ~0.96, and ~0.87. The volume of fine-mode particles varied from 0.04 to 0.21 µm3 µm-2, 0.06 to 0.17 µm3 µm-2, and 0.01 to 0.10 µm3 µm-2, which were about 0.3 to 5.8, 1.1 to 4.7, and 1.2 to 8.9 times greater than the background values, respectively. The daily absorption aerosol optical depth was ~0.01 to ~0.13 at CAMS, ~0.03 to ~0.14 at Xianghe, and ~0.01 to ~0.09 at Shangdianzi, and the absorption Ångström exponents reflected a significant increase in organic aerosols over CAMS and Xianghe and in black carbon over Shangdianzi. Aerosol radiative forcing at the bottom of the atmosphere varied from -20 to -130, -40 to -150, and -10 to -110 W m-2 for the whole holiday period, indicating the cooling effect. The potential source contribution function and concentration-weighted trajectory analysis showed that Beijing, the southern parts of Hebei and Shanxi, and the central northern part of Shandong contributed greatly to the pollution

    An innovative multi-modal retinal imaging system for in vivo retinal detection in small animals

    Get PDF
    This paper presents an innovative retinal imaging system tailored for in vivo fundus detection in small animals. This system integrates Scanning Laser Ophthalmoscopy (SLO) and optical Coherence Tomography (OCT) techniques, enabling the simultaneous generation of images from various modalities, including SLO reflectance, SLO fluorescein angiogram, OCT, and OCT angiogram. The existing multi-modal retinal imaging systems generally encounter limitations such as the inability to detect peripheral lesion areas attributed to small Field of View (FOV) design and susceptibility to sample motion due to slow data acquisition speed. To address these challenges, it’s essential to underscore that this proposed system offers a range of notable advantages, including its compact design, the capacity for widefield imaging with a FOV of up to 100°, and a rapid OCT A-scan rate of 250 kHz, notably exceeding the capabilities of pre-existing multi-modal retinal imaging systems. Validation of the system involved imaging the eyes of normal wild-type mice and diseased mice afflicted with retinal detachment and choroidal neovascularization (CNV). The favorable imaging results demonstrate the system’s reliability in identifying retinal lesions in small animals

    Structure of Randomly Distributed Nanochain Aggregates on Silicon Substrates: Modeling and Optical Absorption Characteristics

    No full text
    Nanoparticle aggregate structures allow for efficient photon capture, and thus exhibit excellent optical absorption properties. In this study, a model of randomly distributed nanochain aggregates on silicon substrates is developed and analyzed. The Gaussian, uniform, and Cauchy spatial distribution functions are used to characterize the aggregate forms of the nanochains and their morphologies are realistically reconstructed. The relationships between the structural parameters (thickness and filling factor), equivalent physical parameters (density, heat capacity, and thermal conductivity), and visible absorptivity of the structures are established and analyzed. All the above-mentioned parameters exhibit extreme values, which maximize the visible-range absorption; these values are determined by the material properties and nanochain aggregate structure. Finally, Al nanochain aggregate samples are fabricated on Si substrates by reducing the kinetic energy of the metal vapor during deposition. The spectral reflection characteristics of the samples are studied experimentally. The Spearman correlation coefficients for the calculated spectral absorption curves and those measured experimentally are higher than 0.82, thus confirming that the model is accurate. The relative errors between the calculated visible-range absorptivities and the measured data are less than 0.3%, further confirming the accuracy of the model

    Authenticating Tibetan pork in China by tracing the species and geographical features based on stable isotopic and multi-elemental fingerprints

    Full text link
    peer reviewedA potential tool for authenticating Tibetan pork based on species and geographical origins was investigated by isotopic and multi-elemental fingerprints to compare Tibetan pork and plain pork from various regions in China. In this study, carbon, nitrogen, hydrogen and oxygen isotope compositions and concentrations of 50 elements of a total of 93 pork samples (Tibetan pork from Tibet and Sichuan, Jilin pork from Jilin and DLY pork from Liaoning) were determined and subjected to multivariate analysis, including linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA) and correlation analysis. The trace elements Fe, Cu, Rb, Mo, Cs, Ir, Co, Sr, Sm and four stable isotopes were determined as potential markers for identifying Tibetan pork. The discriminant model revealed good discrimination among pork samples based on species and regions, and the high accuracies of K-fold cross-validation (95.74% and 97.84%) indicated the reliability and stability of classification models. This study has demonstrated the efficiency of isotopic and multi-elemental technology in identifying Chinese high-altitude indigenous pigs

    A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging

    No full text
    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of ÎĽL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems

    Effects of Diisocyanate Structure and Disulfide Chain Extender on Hard Segmental Packing and Self-Healing Property of Polyurea Elastomers

    No full text
    Four linear polyurea elastomers synthesized from two different diisocyanates, two different chain extenders and a common aliphatic amine-terminated polyether were used as models to investigate the effects of both diisocyanate structure and aromatic disulfide chain extender on hard segmental packing and self-healing ability. Both direct investigation on hard segments and indirect investigation on chain mobility and soft segmental dynamics were carried out to compare the levels of hard segmental packing, leading to agreed conclusions that correlated well with the self-healing abilities of the polyureas. Both diisocyanate structure and disulfide bonds had significant effects on hard segmental packing and self-healing property. Diisocyanate structure had more pronounced effect than disulfide bonds. Bulky alicyclic isophorone diisocyanate (IPDI) resulted in looser hard segmental packing than linear aliphatic hexamethylene diisocyanate (HDI), whereas a disulfide chain extender also promoted self-healing ability through loosening of hard segmental packing compared to its C-C counterpart. The polyurea synthesized from IPDI and the disulfide chain extender exhibited the best self-healing ability among the four polyureas because it had the highest chain mobility ascribed to the loosest hard segmental packing. Therefore, a combination of bulky alicyclic diisocyanate and disulfide chain extender is recommended for the design of self-healing polyurea elastomers
    corecore