18 research outputs found

    Mechanical Properties of Recycled Concrete in Marine Environment

    Get PDF
    Experimental work was carried out to develop information about mechanical properties of recycled concrete (RC) in marine environment. By using the seawater and dry-wet circulation to simulate the marine environment, specimens of RC were tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. Based on the analysis of the stress-strain curves (SSCs) and compressive strength, it is revealed that RC’ peak value and elastic modulus decreased with the increase of replacement percentage and corroding time in marine environment. And the failure of recycled concrete was speeded up with more obvious cracks and larger angles of 65° to 85° in the surface when compared with normal concrete. Finally, the grey model (GM) with equal time intervals was constructed to investigate the law of compressive strength of recycled concrete in marine environment, and it is found that the GM is accurate and feasible for the prediction of RC compressive strength in marine environment

    'Special K' and a loss of cell-to-cell adhesion in proximal tubule-derived epithelial cells: modulation of the adherens junction complex by ketamine

    Get PDF
    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention

    A Siamese ResNeXt network for predicting carotid intimal thickness of patients with T2DM from fundus images

    No full text
    ObjectiveTo develop and validate an artificial intelligence diagnostic model based on fundus images for predicting Carotid Intima-Media Thickness (CIMT) in individuals with Type 2 Diabetes Mellitus (T2DM).MethodsIn total, 1236 patients with T2DM who had both retinal fundus images and CIMT ultrasound records within a single hospital stay were enrolled. Data were divided into normal and thickened groups and sent to eight deep learning models: convolutional neural networks of the eight models were all based on ResNet or ResNeXt. Their encoder and decoder modes are different, including the standard mode, the Parallel learning mode, and the Siamese mode. Except for the six unimodal networks, two multimodal networks based on ResNeXt under the Parallel learning mode or the Siamese mode were embedded with ages. Performance of eight models were compared via the confusion matrix, precision, recall, specificity, F1 value, and ROC curve, and recall was regarded as the main indicator. Besides, Grad-CAM was used to visualize the decisions made by Siamese ResNeXt network, which is the best performance.ResultsPerformance of various models demonstrated the following points: 1) the RexNeXt showed a notable improvement over the ResNet; 2) the structural Siamese networks, which extracted features parallelly and independently, exhibited slight performance enhancements compared to the traditional networks. Notably, the Siamese networks resulted in significant improvements; 3) the performance of classification declined if the age factor was embedded in the network. Taken together, the Siamese ResNeXt unimodal model performed best for its superior efficacy and robustness. This model achieved a recall rate of 88.0% and an AUC value of 90.88% in the validation subset. Additionally, heatmaps calculated by the Grad-CAM algorithm presented concentrated and orderly mappings around the optic disc vascular area in normal CIMT groups and dispersed, irregular patterns in thickened CIMT groups.ConclusionWe provided a Siamese ResNeXt neural network for predicting the carotid intimal thickness of patients with T2DM from fundus images and confirmed the correlation between fundus microvascular lesions and CIMT

    The effects of different human disturbance regimes on root fungal diversity of Rhododendron ovatum in subtropical forests of China

    No full text
    Ericoid mycorrhizal associations are a symbiotic relationship between soil fungi and ericaceous plants. Diversity of fungi associated with hair roots of ericaceous plants may vary as a result of frequent disturbances by human activities. The fungal diversity and communities associated with hair roots of Rhododendron ovatum were investigated along a human disturbance gradient in subtropical forests of China. Nine hundred fungal operational taxonomic units were determined by high-throughput sequencing, including different phyla such as Ascomycota, Basidiomycota, Zygomycota, Chytridiomycota, and Glomeromycota. The dominant phylum in Cunninghamia lanceolata plantations and old-growth forest was Ascomycota, while Basidiomycota was the dominant phylum in secondary forests. The indicator species analyses showed that more pathogenic indicator fungi appeared in the disturbed forests, whereas more putative ericoid mycorrhizal fungi existed in the old-growth forests. Principal component analysis also showed that the fungal communities in the hair roots of R. ovatum were distinct between natural forests and plantations, suggesting that the fungal communities associated with hair roots of R. ovatum after logging were resilient and could recover to predisturbance status. The results of envfit analysis showed that performance of host plants rather than accompanying plant community and soil parameters of plots was the key determinant of the root-associated fungal community of R. ovatum

    The effects of different human disturbance regimes on root fungal diversity of Rhododendron ovatum in subtropical forests of China

    No full text
    Ericoid mycorrhizal associations are symbiotic relationship between soil fungi and ericaceous plants. Diversity of fungi associated with hair roots of ericaceous plants may vary as a result of frequent disturbances by human activities. The fungal diversity and communities associated with hair roots of Rhododendron ovatum was investigated along a human disturbance gradient in subtropical forests of China. 900 fungal OTUs were determined by the high-throughput sequencing, including different phyla such as Ascomycota, Basidiomycota, Zygomycota, Chytridiomycota, and Glomeromycota. The dominant phylum in PLF and OGF was Ascomycota, while Basidiomycota was the dominant phylum in secondary forests. The indicator species analyses showed that more pathogenic indicator fungi appeared in the disturbed forests, whereas more putative ericoid mycorrhizal fungi existed in the old growth forests. Principal Component Analysis also showed that the fungal communities in the hair roots of R. ovatum were distinct between natural forests and plantations, suggesting that the fungal communities associated with hair roots of R. ovatum after logging were resilient and could be recovered to pre-disturbance status. The results of envfit analysis showed that performance of host plants rather than accompany plant community and soil parameters of plots were the key determinant of root-associated fungal community of R. ovatum.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Diversity of root-associated fungi of Vaccinium mandarinorum along a human disturbance gradient in subtropical forests, China

    No full text
    Aims Ericaceous plant species can host diverse fungi in their roots, including ericoid mycorrhizal fungi (ERMF), endophytes, pathogens and some species with unknown functions. However, how this diversity of fungi responds to different human disturbances is not well understood. Methods In this study, we examined the effects of different human disturbance on fungal diversity in hair roots of Vaccinium mandarinorum, an ericaceous plant. Fungal DNA was extracted from hair roots of V. mandarinorum and high-throughput sequencing was applied to detect the diversity of root-associated fungi along a human disturbance gradient in subtropical forests in Gutianshan National Nature Reserve (GNNR) in East China. The four forest types with different disturbance regime were: old growth forest (OGF), secondary forest with once cut (SEC I), secondary forest with twice cut (SEC II) and Cunninghamia lanceolata plantation (PLF). Important Findings The results showed that: (i) diverse fungal operational units (OTUs) were detected in hair roots of V. mandarinorum in the four types of forests, covering fungal phyla of Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Zygomycota; (ii) Community composition of root-associated fungi of V. mandarinorum in PLF was distinct from those in the other three forest types, and two types of secondary forests had similar fungal community composition; (iii) Different fungal families respond differently to human disturbances: fungal families with significant preference to OGF were ectomycorrhizal or saprophytic fungi while fungal families with higher relative abundance in PLF were plant pathogenic or saprophytic fungi; (iv) The first principal component (PC1) of plant community had a significant effect on composition of root-associated fungal community, while edaphic parameters showed no significant effect on fungal community composition in roots of V. mandarinorum. Our results help to better understand the responses of both ericaceous plants and their fungal partners to human disturbances and forest managements

    The complete chloroplast genome of Epimedium enshiense B. L. Guo et Hsiao (Berberidaceae)

    No full text
    The genus of Epimedium belongs to Berberidaceae family, which is famous for their medicinal and ornamental value. In recent years, Epimedium has attracted increasing attention due to their medicinal and nutritive value. In this research, we reported the complete chloroplast (cp) genome of Epimedium enshiense. The complete chloroplast of this species is 157,076 bp in length, including a pair of invert repeat regions (IRS) (25,833 bp) that is divided by a large single copy area (LSC) (88,340 bp) and a small single copy area (SSC) (17,070 bp). The circular chloroplast genome of E. enshiense contains 112 unique genes, composing of 78 protein-coding genes, 30 tRNA, and four rRNA genes. Phylogenetic analysis indicates that E. enshiense has a closer relationship with E. dolichostmon

    Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China.

    No full text
    To characterize the quality of widely consumed pork in China, the chemical compositions and other indexes of five breeds of pork were compared. The results indicated that the moisture content, sensory flavor, and overall acceptability of Pipa pork (PPP) were superior to other breeds. The fat content and essential amino acids (EAA) of Yihao native pork (YNP) were significantly (p < 0.05) higher than in other breeds. The protein content, the total amount of amino acids, and perceptible flavor of Tibetan black pork (TBP) were higher than in other breeds. The protein nutrition profiles of manor black pork (MBP) and TBP were better than in others. The equivalent umami concentration (EUC) value of white pork (WP) was significantly (p < 0.05) higher than in others; however, the health risk of its fatty acid content was higher. There were unique protein and flavor chemicals in YNP, TBP, and PPP, which may be useful for distinguishing their authenticity

    FeNi Cubic Cage@N-Doped Carbon Coupled with N‑Doped Graphene toward Efficient Electrochemical Water Oxidation

    No full text
    Oxygen evolution reaction (OER) is of great significance in electrochemical water splitting on industrial scale, which suffers from the slow kinetics and large overpotential, thus setting the main obstacle for efficient water electrolysis. To pursue cost-effective OER electrocatalysts with high activity and durable stability, we here set a facile strategy to prepare N-doped graphene supported core–shell FeNi alloy@N-doped carbon nanocages (FeNi@NC-NG) by annealing graphene oxides supported Prussian blue analogues under H<sub>2</sub>/Ar atmosphere. Based on the specific structural benefits, the present catalyst shows superior OER catalytic activity than precious metal catalyst of RuO<sub>2</sub> and Ir/C, with a low overpotential of 270 mV for 10 mA cm<sup>–2</sup>, as well as high stability. The simple synthesis process and outstanding electrocatalytic performances show great potential of FeNi@NC-NG to replace the noble metal-based catalysts toward electrochemical water oxidation
    corecore