150 research outputs found

    Comprehensive research on safe measures for ice navigation in Yingkou ice-covered waters

    Get PDF

    Balancing Logit Variation for Long-tailed Semantic Segmentation

    Full text link
    Semantic segmentation usually suffers from a long-tail data distribution. Due to the imbalanced number of samples across categories, the features of those tail classes may get squeezed into a narrow area in the feature space. Towards a balanced feature distribution, we introduce category-wise variation into the network predictions in the training phase such that an instance is no longer projected to a feature point, but a small region instead. Such a perturbation is highly dependent on the category scale, which appears as assigning smaller variation to head classes and larger variation to tail classes. In this way, we manage to close the gap between the feature areas of different categories, resulting in a more balanced representation. It is noteworthy that the introduced variation is discarded at the inference stage to facilitate a confident prediction. Although with an embarrassingly simple implementation, our method manifests itself in strong generalizability to various datasets and task settings. Extensive experiments suggest that our plug-in design lends itself well to a range of state-of-the-art approaches and boosts the performance on top of them

    EA-BEV: Edge-aware Bird' s-Eye-View Projector for 3D Object Detection

    Full text link
    In recent years, great progress has been made in the Lift-Splat-Shot-based (LSS-based) 3D object detection method, which converts features of 2D camera view and 3D lidar view to Bird's-Eye-View (BEV) for feature fusion. However, inaccurate depth estimation (e.g. the 'depth jump' problem) is an obstacle to develop LSS-based methods. To alleviate the 'depth jump' problem, we proposed Edge-Aware Bird's-Eye-View (EA-BEV) projector. By coupling proposed edge-aware depth fusion module and depth estimate module, the proposed EA-BEV projector solves the problem and enforces refined supervision on depth. Besides, we propose sparse depth supervision and gradient edge depth supervision, for constraining learning on global depth and local marginal depth information. Our EA-BEV projector is a plug-and-play module for any LSS-based 3D object detection models, and effectively improves the baseline performance. We demonstrate the effectiveness on the nuScenes benchmark. On the nuScenes 3D object detection validation dataset, our proposed EA-BEV projector can boost several state-of-the-art LLS-based baselines on nuScenes 3D object detection benchmark and nuScenes BEV map segmentation benchmark with negligible increment of inference time

    Molecular oxygen-assisted in defect-rich ZnO for catalytic depolymerization of polyethylene terephthalate

    Get PDF
    Polyethylene terephthalate (PET) is the most produced polyester plastic; its waste has a disruptive impact on the environment and ecosystem. Here, we report a catalytic depolymerization of PET into bis(2-hydroxyethyl) terephthalate (BHET) using molecule oxygen (O2)−assisted in defect-rich ZnO. At air, the PET conversion rate, the BHET yield, and the space-time yield are 3.5, 10.6, and 10.6 times higher than those in nitrogen, respectively. Combining structural characterization with the results of DFT calculations, we conclude that the (100) facet of defect-rich ZnO nanosheets conducive to the formation of reactive oxygen species (∗O2−) and Zn defect, promotes the PET breakage of the ester bond and thus complete the depolymerization processed. This approach demonstrates a sustainable route for PET depolymerization by molecule-assisted defect engineering.publishedVersio

    MIAD: A Maintenance Inspection Dataset for Unsupervised Anomaly Detection

    Full text link
    Visual anomaly detection plays a crucial role in not only manufacturing inspection to find defects of products during manufacturing processes, but also maintenance inspection to keep equipment in optimum working condition particularly outdoors. Due to the scarcity of the defective samples, unsupervised anomaly detection has attracted great attention in recent years. However, existing datasets for unsupervised anomaly detection are biased towards manufacturing inspection, not considering maintenance inspection which is usually conducted under outdoor uncontrolled environment such as varying camera viewpoints, messy background and degradation of object surface after long-term working. We focus on outdoor maintenance inspection and contribute a comprehensive Maintenance Inspection Anomaly Detection (MIAD) dataset which contains more than 100K high-resolution color images in various outdoor industrial scenarios. This dataset is generated by a 3D graphics software and covers both surface and logical anomalies with pixel-precise ground truth. Extensive evaluations of representative algorithms for unsupervised anomaly detection are conducted, and we expect MIAD and corresponding experimental results can inspire research community in outdoor unsupervised anomaly detection tasks. Worthwhile and related future work can be spawned from our new dataset

    Learning Audio-Visual Source Localization via False Negative Aware Contrastive Learning

    Full text link
    Self-supervised audio-visual source localization aims to locate sound-source objects in video frames without extra annotations. Recent methods often approach this goal with the help of contrastive learning, which assumes only the audio and visual contents from the same video are positive samples for each other. However, this assumption would suffer from false negative samples in real-world training. For example, for an audio sample, treating the frames from the same audio class as negative samples may mislead the model and therefore harm the learned representations e.g., the audio of a siren wailing may reasonably correspond to the ambulances in multiple images). Based on this observation, we propose a new learning strategy named False Negative Aware Contrastive (FNAC) to mitigate the problem of misleading the training with such false negative samples. Specifically, we utilize the intra-modal similarities to identify potentially similar samples and construct corresponding adjacency matrices to guide contrastive learning. Further, we propose to strengthen the role of true negative samples by explicitly leveraging the visual features of sound sources to facilitate the differentiation of authentic sounding source regions. FNAC achieves state-of-the-art performances on Flickr-SoundNet, VGG-Sound, and AVSBench, which demonstrates the effectiveness of our method in mitigating the false negative issue. The code is available at \url{https://github.com/OpenNLPLab/FNAC_AVL}.Comment: CVPR202
    • …
    corecore