21 research outputs found

    Vibration control of a tunnel boring machine using adaptive magnetorheological damper

    Get PDF
    With a large number of tunnel boring machines (TBM) being used in various tunnel constructions, the vibration problem under complex geological conditions have become increasingly prominent. In order to solve the problem, this article investigates the application of an adaptive magnetorheological (MR) damper on the vibration reduction of a TBM. The MR damper could reduce the horizontal vibration of the TBM system and adjust its dragging force on the propulsive system under different geological conditions. The MR damper can also provide large enough damping force even under a small amplitude vibration, which is required by TBM. In this paper, an MR damper was designed, prototyped and its properties were tested by an MTS system, including its current-dependency, amplitude-dependency and frequency-dependency features. A scaled TBM system incorporated with the MR damper was built to evaluate the vibration reduction effectiveness of the MR damper on the TBM system. The experimental test results demonstrate that the displacement and the acceleration amplitudes of the TMB vibration could be reduced by 52.14% and 53.31%, respectively

    Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles

    Get PDF
    With the increase in speed of high-speed trains, their vibration will become fiercer and fiercer, especially when the lateral resonance of the car body occurs. This paper develops a versatile semi-active suspension system with variable stiffness (VS) magnetorheological elastomer (MRE) isolators and variable damping (VD) magnetorheological (MR) dampers for high-speed trains, aiming to improve ride comfort by avoiding car body resonance and dissipating vibration energy. As the first step, a multifunction VSVD semi-active suspension system for high-speed railway vehicles was designed and prototyped, including four VS-MRE isolators and two VD-MR dampers. After that, a scaled train model, composing of a car body and a secondary lateral suspension system was designed and built to evaluate the performance of the new VSVD suspension system; a control strategy based on short-time Fourier transform (STFT) and sky-hook was proposed to control the new suspension system. Two different excitations, harmonic excitation and random excitation, were applied to evaluate the train\u27s VSVD suspension. As a comparison, four alternative suspension systems, including passive-off suspension, passive-on suspension, pure VS suspension, and pure VD suspension were also evaluated. The evaluation results verified that the VSVD suspension of the train can avoid lateral resonance of car body and dissipate the vibration energy efficiently. The comparison verified that the VSVD suspension system outperforms the passive-off suspension, passive-on suspension, pure VS suspension, and pure VD suspension

    Surface Adsorption-Mediated Ultrahigh Efficient Peptide Encapsulation with a Precise Ratiometric Control for Type 1 and 2 Diabetic Therapy

    Get PDF
    A surface adsorption strategy is developed to enable the engineering of microcomposites featured with ultrahigh loading capacity and precise ratiometric control of co-encapsulated peptides. In this strategy, peptide molecules (insulin, exenatide, and bivalirudin) are formulated into nanoparticles and their surface is decorated with carrier polymers. This polymer layer blocks the phase transfer of peptide nanoparticles from oil to water and, consequently, realizes ultrahigh peptide loading degree (up to 78.9%). After surface decoration, all three nanoparticles are expected to exhibit the properties of adsorbed polymer materials, which enables the co-encapsulation of insulin, exenatide, and bivalirudin with a precise ratiometric control. After solidification of this adsorbed polymer layer, the release of peptides is synchronously prolonged. With the help of encapsulation, insulin achieves 8 days of glycemic control in type 1 diabetic rats with one single injection. The co-delivery of insulin and exenatide (1:1) efficiently controls the glycemic level in type 2 diabetic rats for 8 days. Weekly administration of insulin and exenatide co-encapsulated microcomposite effectively reduces the weight gain and glycosylated hemoglobin level in type 2 diabetic rats. The surface adsorption strategy sets a new paradigm to improve the pharmacokinetic and pharmacological performance of peptides, especially for the combination of peptides.Peer reviewe

    Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage-A Versatile and Efficient Protein Encapsulation Strategy

    Get PDF
    Engineering a system with a high mass fraction of active ingredients, especially water-soluble proteins, is still an ongoing challenge. In this work, we developed a versatile surface camouflage strategy that can engineer systems with an ultrahigh mass fraction of proteins. By formulating protein molecules into nanoparticles, the demand of molecular modification was transformed into a surface camouflage of protein nanoparticles. Thanks to electrostatic attractions and van der Waals interactions, we camouflaged the surface of protein nanoparticles through the adsorption of carrier materials. The adsorption of carrier materials successfully inhibited the phase transfer of insulin, albumin, β-lactoglobulin, and ovalbumin nanoparticles. As a result, the obtained microcomposites featured with a record of protein encapsulation efficiencies near 100% and a record of protein mass fraction of 77%. After the encapsulation in microcomposites, the insulin revealed a hypoglycemic effect for at least 14 d with one single injection, while that of insulin solution was only ∼4 h.Peer reviewe

    High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury

    Get PDF
    High drug loading improves therapeutic efficacy and reduces side effects in drug delivery. Here, the authors use controlled diffusion of solvents to precipitate drug nanoparticles in polymer particles while the polymer is solidifying and demonstrate the particles for drug delivery in a spinal cord injury model. Drug delivery systems with high content of drug can minimize excipients administration, reduce side effects, improve therapeutic efficacy and/or promote patient compliance. However, engineering such systems is extremely challenging, as their loading capacity is inherently limited by the compatibility between drug molecules and carrier materials. To mitigate the drug-carrier compatibility limitation towards therapeutics encapsulation, we developed a sequential solidification strategy. In this strategy, the precisely controlled diffusion of solvents from droplets ensures the fast in-droplet precipitation of drug molecules prior to the solidification of polymer materials. After polymer solidification, a mass of drug nanoparticles is embedded in the polymer matrix, forming a nano-in-micro structured microsphere. All the obtained microspheres exhibit long-term storage stability, controlled release of drug molecules, and most importantly, high mass fraction of therapeutics (21.8-63.1 wt%). Benefiting from their high drug loading degree, the nano-in-micro structured acetalated dextran microspheres deliver a high dose of methylprednisolone (400 mu g) within the limited administration volume (10 mu L) by one single intrathecal injection. The amount of acetalated dextran used was 1/433 of that of low drug-loaded microspheres. Moreover, the controlled release of methylprednisolone from high drug-loaded microspheres contributes to improved therapeutic efficacy and reduced side effects than low drug-loaded microspheres and free drug in spinal cord injury therapy.Peer reviewe

    Reactive Oxygen Species-Mediated Tumor Microenvironment Transformation: The Mechanism of Radioresistant Gastric Cancer

    No full text
    Radioresistance is one of the primary causes responsible for therapeutic failure and recurrence of cancer. It is well documented that reactive oxygen species (ROS) contribute to the initiation and development of gastric cancer (GC), and the levels of ROS are significantly increased in patients with GC accompanied with abnormal expressions of multiple inflammatory factors. It is also well documented that ROS can activate cancer cells and inflammatory cells, stimulating the release of a variety of inflammatory cytokines, which subsequently mediates the tumor microenvironment (TME) and promotes cancer stem cell (CSC) maintenance as well as renewal and epithelial-mesenchymal transition (EMT), ultimately resulting in radioresistance and recurrence of GC

    Theoretical and experimental investigation of a stiffness-controllable suspension for railway vehicles to avoid resonance

    No full text
    © 2020 In this paper, a semi-active suspension system, composed of variable stiffness (VS) magnetorheological (MR) dampers, was developed and investigated theoretically and experimentally, aiming to improve the ride comfort of high-speed train by avoiding the train body resonance. Firstly, a full-scaled high-speed train model with 17-degree-of-freedom (17-DOF), whose secondary lateral suspension was installed with two VS-MR dampers, was established. And the numerical evaluation on the performance of the VS suspension was conducted. Secondly, a scaled high-speed railway vehicle and the VS suspension were designed and manufactured for experimental evaluation on a vibration generating platform under different excitations. The experimental results are consistent with the numerical evaluation results, which show that the VS suspension can effectively avoid the train\u27s resonance in lateral direction and greatly improve the ride comfort compared with the traditional suspension system

    Impact of Phosphogypsum Application on Fungal Community Structure and Soil Health in Saline–Alkali-Affected Paddy Fields

    No full text
    Modifying saline–alkali soil is crucial for ensuring food security and expanding arable land. Microorganisms play a key role in driving various biochemical processes in agricultural ecosystems. However, limited information exists on the changes in the microbial community and soil structure in soda saline-alkali soil under modified conditions. In this study, we examined the changes in soil physicochemical properties of saline–alkali soil altered by rice planting alone and by combined application of phosphogypsum in the Songnen Plain. The results demonstrated that phosphogypsum significantly improved the soil’s physicochemical properties; it notably reduced salinity and alkalinity while enhancing nutrient structure. Additionally, the utilization efficiency of carbon (C), nitrogen (N), and phosphorus (P) increased. Fungal community diversity also significantly improved, influenced mainly by soil water content (SWC), total organic carbon (TOC), soil organic matter (SOM), total nitrogen (TN) and sodium ion (Na+). TOC, SOM, TN, ESP, and Na+ served as the primary drivers affecting the fungal community. Our findings indicate that combining rice planting with phosphogypsum application effectively modifies saline–alkali soil, regulates fungal community structure, and enhances long-term soil health. Furthermore, the beneficial effects of phosphogypsum on saline–alkali soil persist for persists for several years, largely owing to its role in promoting microbial community growth
    corecore