75 research outputs found
Research Progress on the Stability of Edible Jiaosu Products
Edible jiaosu is one type of food with many bioactive substances, which is very beneficial to human health. The stability of edible jiaosu is the key and difficult point to the development to the new jiaosu products. Currently, many studies on edible jiaosu have been conducted both domestically and internationally. However, there has been no systematic induction and summary until now. Therefore, based on the existing research results, this article summarizes the detection models and evaluation indicators related to the stability of jiaosu products. It shows that the main models include the predicting shelf life dynamics models. The stability indicators mainly include the sensory evaluation, pH index, the functional evaluation, the content of activity, and the probiotic content, among which the sensory evaluation and the antioxidant activity are the main evaluation indicators for the most stability evaluation. The factors that affect the stability of edible jiaosu products include the production process conditions (breeding strain, and fermentation time), the post-processing and the storage environment. The summary shows that by selecting suitable strains or mixed strains for fermentation, reasonable adjustment of fermentation time, adopting appropriate sterilization and drying methods, other post-processing methods, and using the low temperature, dark, anaerobic conditions are all beneficial to improve the stability of jiaosu products. It is recommended to further explore the selection of advantageous strains, research on post processing techniques, and stability regulations for jiaosu processing in the future. In summary, this paper summarizes the evaluation models and indicators for the stability of edible jiaosu, pointed out that production the process conditions, the post-processing of edible enzyme products, and the storage environment have a significant impact on the stability of edible jiaosu, and proposed measures and suggestions to improve its stability. This work provides a theoretical reference basis and guidance for promoting the stability of edible jiaosu and the development of its related industries
Deciphering Structure and Charge Carrier Behavior in Reduced‐Dimensional Perovskites
Reduced-dimensional perovskites (RDPs) have advanced perovskite optoelec-
tronic devices due to their tunable energy landscape, structure, and orientation.
However, the origin of structural and photophysical property changes
when moving from low-dimensional to high-dimensional RDPs remains to
be understood. This study systematically reveals structural and photophysical
properties of slot-die-coated Dion-Jacobson (DJ) and Ruddlesden-Popper
(RP) RDPs with different dimensionalities. RP RDPs with lower dimensionality
(n = 2) exhibit a dominant n = 2 phase, preferential out-of-plane orientation,
and longer charge carrier lifetime compared with DJ RDPs. In addition, the
formation kinetics of RDPs with higher dimensionality (n = 4) are unraveled by
in situ X-ray scattering, showing the favorable formation of the lower-n phase
in RP RDPs. The formation of these lower-n phases is thermodynamically
and stoichiometrically favored, while these phases are likely in the form
of an “intermediate phase” which bridges the 3D-like and lower-n phases in
DJ RDPs. DJ RDPs with higher dimensionality demonstrate comparable phase
purity, preferential orientation, spatially vertical phase homogeneity, and longer
charge carrier lifetime. As such, DJ-based perovskite solar cells (PSCs) (n = 4)
demonstrate better photostability under operational conditions than RP-based
PSCs. Thus, the work paves the way for the utilization of RDPs to upscale PSCs
Establishment of a novel experimental system for studying the photoperiodic response of short-day dicots using soybean ‘cotyledon-only plant’ as material
Soybean is an important model crop for photoperiodic response studies in plants and contributes significantly to the study of plant development and physiology in the past century. Because soybean plant is much bigger in size and longer in life cycle than Arabidopsis, it needs much more space for growth and time for investigation, which significantly hamper the efficiency of research. In the current study, we tested the photoperiodic response of a distinctive artificially-made cotyledon-only plant (COP) using a photoperiod-sensitive soybean variety Zigongdongdou (ZGDD) and other varieties with diverse sensitivity to photoperiod. ZGDD COPs flowered 39.4 ± 2.5 d after emergence under short-day conditions but maintained vegetative growth under long-day and night break conditions, which is similar to the case in the intact ZGDD plants. The COPs of early-maturing and medium-maturing soybean varieties also grew and flowered normally under natural day-length conditions. At the molecular level, the key genes in the photoperiodic pathway such as E1, GmFT1a, GmFT2a, and GmFT5a in the COPs also showed the same photoperiod sensitivity as in the intact plants. In addition, a simpler material of COP with only one cotyledon and root was generated and found to be sensitive to photoperiod as well. Notably, the COPs are only one-fifth the height of intact plants and one-third the maximum diameter of the intact plants grown in chambers 30 d after emergence. Based on COPs, we established a novel experimental system characterized by an entire photoperiodic response and longer longevity of cotyledons in addition to small plant size, ensuring the consistency, reliability, and stability of plant materials. COPs have the potential to be a novel model material for studies of the developmental biology of soybean and other dicots
Imputation-Based Whole-Genome Sequence Association Study Reveals Constant and Novel Loci for Hematological Traits in a Large-Scale Swine F2 Resource Population
The whole-genome sequences of progenies with low-density single-nucleotide polymorphism (SNP) genotypes can be imputed with high accuracy based on the deep-coverage sequences of key ancestors. With this imputation technology, a more powerful genome-wide association study (GWAS) can be carried out using imputed whole-genome variants and the phenotypes of interest to overcome the shortcomings of low-power detection and the large confidence interval derived from low-density SNP markers in classic association studies. In this study, 19 ancestors of a large-scale swine F2 White Duroc × Erhualian population were deeply sequenced for their genome with an average coverage of 25×. Considering 98 pigs from 10 different breeds with high-quality deep sequenced genomes, we imputed the whole genomic variants of 1020 F2 pigs genotyped by the PorcineSNP60 BeadChip with high accuracy and obtained 14,851,440 sequence variants after quality control. Based on this, 87 novel quantitative traits loci (QTLs) for 18 hematological traits at three different physiological stages of the F2 pigs were identified, among which most of the novel QTLs have been repeated in two of the three stages. Literature mining pinpointed that the FGF14 and LCLAT1 genes at SSC11 and SSC3 may affect the MCH at day 240 and MCV at day 18, respectively. The present study shows that combining high-quality imputed genomic variants and correlated phenomic traits into GWAS can improve the capability to detect QTL considerably. The large number of different QTLs for hematological traits identified at multiple growth stages implies the complexity and time specificity of these traits
Vagus nerve stimulation for refractory posttraumatic epilepsy: Efficacy and predictors of seizure outcome
BackgroundTraumatic brain injury (TBI) has been recognized as an important and common cause of epilepsy since antiquity. Posttraumatic epilepsy (PTE) is usually associated with drug resistance and poor surgical outcomes, thereby increasing the burden of the illness on patients and their families. Vagus nerve stimulation (VNS) is an adjunctive treatment for medically refractory epilepsy. This study aimed to determine the efficacy of VNS for refractory PTE and to initially evaluate the potential predictors of efficacy.MethodsWe retrospectively collected the outcomes of VNS with at least a 1-year follow-up in all patients with refractory PTE. Subgroups were classified as responders and non-responders according to the efficacy of VNS (≥50% or <50% reduction in seizure frequency). Preoperative data were analyzed to screen for potential predictors of VNS efficacy.ResultsIn total, forty-five patients with refractory PTE who underwent VNS therapy were enrolled. Responders were found in 64.4% of patients, and 15.6% of patients achieved seizure freedom at the last follow-up. In addition, the responder rate increased over time, with 37.8, 44.4, 60, and 67.6% at the 3-, 6-, 12-, and 24-month follow-ups, respectively. After multivariate analysis, generalized interictal epileptic discharges (IEDs) were found to be a negative predictor (OR: 4.861, 95% CI: 1.145–20.632) of VNS efficacy.ConclusionThe results indicated that VNS therapy was effective in refractory PTE patients and was well tolerated over a 1-year follow-up period. Patients with focal or multifocal IEDs were recognized to have better efficacy after VNS therapy
Vagus nerve stimulation for pharmacoresistant epilepsy secondary to encephalomalacia: A single-center retrospective study
ObjectiveVagus nerve stimulation (VNS) is an adjunctive treatment for pharmacoresistant epilepsy. Encephalomalacia is one of the most common MRI findings in the preoperative evaluation of patients with pharmacoresistant epilepsy. This is the first study that aimed to determine the effectiveness of VNS for pharmacoresistant epilepsy secondary to encephalomalacia and evaluate the potential predictors of VNS effectiveness.MethodsWe retrospectively analyzed the seizure outcomes of VNS with at least 1 year of follow-up in all patients with pharmacoresistant epilepsy secondary to encephalomalacia. Based on the effectiveness of VNS (≥50% or <50% reduction in seizure frequency), patients were divided into two subgroups: responders and non-responders. Preoperative data were analyzed to screen for potential predictors of VNS effectiveness.ResultsA total of 93 patients with epilepsy secondary to encephalomalacia who underwent VNS therapy were recruited. Responders were found in 64.5% of patients, and 16.1% of patients achieved seizure freedom at the last follow-up. In addition, the responder rate increased over time, with 36.6, 50.5, 64.5, and 65.4% at the 3-, 6-, 12-, and 24-month follow-ups, respectively. After multivariate analysis, seizure onset in adults (>18 years old) (OR: 0.236, 95%CI: 0.059–0.949) was found to be a positive predictor, and the bilateral interictal epileptic discharges (IEDs) (OR: 3.397, 95%CI: 1.148–10.054) and the bilateral encephalomalacia on MRI (OR: 3.193, 95%CI: 1.217–8.381) were found to be negative predictors of VNS effectiveness.ConclusionThe results demonstrated the effectiveness and safety of VNS therapy in patients with pharmacoresistant epilepsy secondary to encephalomalacia. Patients with seizure onset in adults (>18 years old), unilateral IEDs, or unilateral encephalomalacia on MRI were found to have better seizure outcomes after VNS therapy
Identification of differentially expressed HERV-K(HML-2) loci in colorectal cancer
Colorectal cancer is one of the malignant tumors with the highest mortality rate in the world. Survival rates vary significantly among patients at various stages of the disease. A biomarker capable of early diagnosis is required to facilitate the early detection and treatment of colorectal cancer. Human endogenous retroviruses (HERVs) are abnormally expressed in various diseases, including cancer, and have been involved in cancer development. Real-time quantitative PCR was used to detect the transcript levels of HERV-K(HML-2) gag, pol, and env in colorectal cancer to systematically investigate the connection between HERV-K(HML-2) and colorectal cancer. The results showed that HERV-K(HML-2) transcript expression was significantly higher than healthy controls and was consistent at the population and cell levels. We also used next-generation sequencing to identify and characterize HERV-K(HML-2) loci that were differentially expressed between colorectal cancer patients and healthy individuals. The analysis revealed that these loci were concentrated in immune response signaling pathways, implying that HERV-K impacts the tumor-associated immune response. Our results indicated that HERV-K might serve as a screening tumor marker and a target for tumor immunotherapy in colorectal cancer
Localization and macroscopic instability in nanoporous metals
Ductile fracture generally relates to microscopic voiding and to strain localization in metallic materials. When the void size is reduced to the nanoscale, size effects often lead to a different macroscopic plastic behavior from that established for the same material with larger voids. For example, irradiation of metallic materials can generate a large number of voids at the nanoscale, leading to complex deformation behaviors. The present work advances the understanding of strain localization in nanoporous metallic materials, connecting both the microscopic (nano-) and macroscopic scales. To explore the physical mechanisms at the nanoscale, molecular dynamics (MD) simulations were here carried out, capturing multiple nanovoids explicitly. Then, a homogenized continuum theory based in Gurson’s constitutive framework is proposed, which enables us to explore how localized behavior at the macroscopic scale evolves. The homogenized model incorporates the surface tension associated with nanosized void. The importance of this surface tension is illustrated by several parametric studies on the conditions of localization, when a specimen is subjected to uniaxial tension. Our parametric studies show that for smaller nanovoid sizes, and for a hardening matrix material, shear localization onset is delayed. Our proposed homogenization model was then used to predict localization behavior captured by our MD simulation. The yield stress and the localization strain predicted by our continuum model are in general agreement with the trends obtained by MD simulation. Moreover, based on our present study, experimental results of shear failure strain vs. dose of irradiation for several metals could be qualitatively explained rather successfully. Our model can therefore help shed light on prolonging the operation limits and the lifetime of irradiated metallic materials under complex loading conditions
- …