320 research outputs found

    Defect chemistry of Ti and Fe impurities and aggregates in Al2O3

    Get PDF
    We report a theoretical evaluation of the properties of iron and titanium impurities in sapphire (corundum structured α-Al2O3). Calculations using analytical force fields have been performed on the defect structure with the metals present in isolated, co-doped and tri-cluster configurations. Crystal field parameters have been calculated with good agreement to available experimental data. When titanium and iron are present in neighbouring face and edge-sharing orientations, the overlap of the d-orbitals facilitates an intervalence charge transfer (FeIII/TiIII → FeII/TiIV) with an associated optical excitation energy of 1.85 eV and 1.76 eV in the respective configurations. Electronic structure calculations based on density functional theory confirm that FeIII/TiIII is the ground-state configuration for the nearest-neighbour pairs, in contrast to the often considered FeII/TiIV pair. Homonuclear intervalence charge transfer energies between both FeIII/FeII and TiIV/TiIII species have also been calculated, with the energy lying in the infra-red region. Investigation of multiple tri-clusters of iron and titanium identified one stable configuration, TiIII–(TiIV/FeII), with the energy of electron transfer remaining unchanged

    Metadynamic sampling of the free energy landscapes of proteins coupled with a Monte Carlo algorithm

    Full text link
    Metadynamics is a powerful computational tool to obtain the free energy landscape of complex systems. The Monte Carlo algorithm has proven useful to calculate thermodynamic quantities associated with simplified models of proteins, and thus to gain an ever-increasing understanding on the general principles underlying the mechanism of protein folding. We show that it is possible to couple metadynamics and Monte Carlo algorithms to obtain the free energy of model proteins in a way which is computationally very economical.Comment: Submitted to Gen

    Thermodynamics of beta-amyloid fibril formation

    Full text link
    Amyloid fibers are aggregates of proteins. They are built out of a peptide called β\beta--amyloid (Aβ\beta) containing between 41 and 43 residues, produced by the action of an enzyme which cleaves a much larger protein known as the Amyloid Precursor Protein (APP). X-ray diffraction experiments have shown that these fibrils are rich in β\beta--structures, whereas the shape of the peptide displays an α\alpha--helix structure within the APP in its biologically active conformation. A realistic model of fibril formation is developed based on the seventeen residues Aβ\beta12--28 amyloid peptide, which has been shown to form fibrils structurally similar to those of the whole Aβ\beta peptide. With the help of physical arguments and in keeping with experimental findings, the Aβ\beta12--28 monomer is assumed to be in four possible states (i.e., native helix conformation, β\beta--hairpin, globular low--energy state and unfolded state). Making use of these monomeric states, oligomers (dimers, tertramers and octamers) were constructed. With the help of short, detailed Molecular Dynamics (MD) calculations of the three monomers and of a variety of oligomers, energies for these structures were obtained. Making use of these results within the framework of a simple yet realistic model to describe the entropic terms associated with the variety of amyloid conformations, a phase diagram can be calculated of the whole many--body system, leading to a thermodynamical picture in overall agreement with the experimental findings. In particular, the existence of micellar metastable states seem to be a key issue to determine the thermodynamical properties of the system

    Madagascar face au défi des objectifs du millénaire pour le développement

    Get PDF

    A folding inhibitor of the HIV-1 Protease

    Full text link
    Being the HIV-1 Protease (HIV-1-PR) an essential enzyme in the viral life cycle, its inhibition can control AIDS. The folding of single domain proteins, like each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES, folding units stabilized by strongly interacting, highly conserved, as a rule hydrophobic, amino acids). These LES have evolved over myriad of generations to recognize and strongly attract each other, so as to make the protein fold fast and be stable in its native conformation. Consequently, peptides displaying a sequence identical to those segments of the monomers associated with LES are expected to act as competitive inhibitors and thus destabilize the native structure of the enzyme. These inhibitors are unlikely to lead to escape mutants as they bind to the protease monomers through highly conserved amino acids which play an essential role in the folding process. The properties of one of the most promising inhibitors of the folding of the HIV-1-PR monomers found among these peptides is demonstrated with the help of spectrophotometric assays and CD spectroscopy

    Designability of lattice model heteropolymers

    Full text link
    Protein folds are highly designable, in the sense that many sequences fold to the same conformation. In the present work we derive an expression for the designability in a 20 letter lattice model of proteins which, relying only on the Central Limit Theorem, has a generality which goes beyond the simple model used in its derivation. This expression displays an exponential dependence on the energy of the optimal sequence folding on the given conformation measured with respect to the lowest energy of the conformational dissimilar structures, energy difference which constitutes the only parameter controlling designability. Accordingly, the designability of a native conformation is intimately connected to the stability of the sequences folding to them.Comment: in press on Phys. Rev.

    ORGANOMETALLIC CHEMISTRY FROM THE INTERACTING QUANTUM ATOM APPROACH

    Get PDF
    The Interacting Quantum Atoms approach(IQA) is a recent development of Bader\u2019s QTAM(Quantum Theory of Atoms in Molecules). During the PhD studies the use of pseudopotential inside IQA was implemented allowing the study of transition metal compounds with this techniques. Furthermore IQA concepts were joined with Pon\ue8c\u2019s DAFH (Domain Avaraged Fermi Hole) giving the so-called IQA-EDF-DAFH analysis (EDF= electron-number distribution function) which provide a complete description of the chemical bond in terms of electron density. In order to make benchmark of this new technique classic metal-organic molecules like metal carbonyls, metal hydrides and simple metal dimeric compounds were studied

    Evolution of frustrated and stabilising contacts in reconstructed ancient proteins

    Get PDF
    Energetic properties of a protein are a major determinant of its evolutionary fitness. Using a reconstruction algorithm, dating the reconstructed proteins and calculating the interaction network between their amino acids through a coevolutionary approach, we studied how the interactions that stabilise 890 proteins, belonging to five families, evolved for billions of years. In particular, we focused our attention on the network of most strongly attractive contacts and on that of poorly optimised, frustrated contacts. Our results support the idea that the cluster of most attractive interactions extends its size along evolutionary time, but from the data, we cannot conclude that protein stability or that the degree of frustration tends always to decrease

    Helical frontier orbitals of conjugated linear molecules

    Get PDF
    Compounds containing allenes, cumulenes and oligoynes (polyalkynes) have attracted attention for both their conformation and reactivity. Whilst the textbook molecular orbital description explains the general electronic and molecular structure of the cumulenes, there are anomalies in both the crystal structures and cycloaddition products involving oligoynes and allenes; the understanding of these molecules is incomplete. Through a computational study we elucidate that the frontier orbitals of the allene and oligoyne families are extended helices. These orbitals are the linear analogue to the Möbius aromatic systems, which also display non-linear π interactions. The axial chirality found in allenes and oligoynes is intimately related to the topology of the frontier orbitals, and has implications for predictions of cycloaddition pathways, structure stability and spectroscopy
    • …
    corecore