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Abstract
Energetic properties of a protein are a major determinant of its evolutionary fitness. Using a reconstruction algorithm, dat-
ing the reconstructed proteins and calculating the interaction network between their amino acids through a coevolutionary 
approach, we studied how the interactions that stabilise 890 proteins, belonging to five families, evolved for billions of years. 
In particular, we focused our attention on the network of most strongly attractive contacts and on that of poorly optimised, 
frustrated contacts. Our results support the idea that the cluster of most attractive interactions extends its size along evolution-
ary time, but from the data, we cannot conclude that protein stability or that the degree of frustration tends always to decrease.

Keywords Protein evolution · Coevolutionary potential · Frustration · Reconstructed sequences

Introduction

The evolutionary fitness of a protein is tightly related to its 
energetic properties. An important determinant of the evolu-
tionary fitness of structured proteins is their thermodynamic 
stability. The stability requirement imposes a constraint to 
viable mutations and acts in a non-trivial, cooperative way 
at the level of the whole organism (Zeldovich et al. 2007; 
Rodrigues et al. 2016).

The stability of ancient proteins has been widely studied 
experimentally by sequence reconstruction, expressing and 
analysing ancient sequences obtained from extant protein 
families through maximum-likelihood or Bayesian methods 
(Wheeler et al. 2016). In general, ancient proteins are more 
stable than modern ones (Gaucher et al. 2008; Perez-Jimenez 
et al. 2011; Carstensen et al. 2012; Risso et al. 2013; Aka-
numa et al. 2013), although counterexamples exist (Hart 
et al. 2014). This behaviour is usually rationalised in terms 

of a higher environmental temperature in the Precambrian 
era (Boussau et al. 2008; Wheeler et al. 2016). Moreover, 
simple protein models suggest that the evolution of ther-
modynamic stability is controlled by a cluster of strongly 
stabilising residues that evolves in a slower way with respect 
to the others (Tiana et al. 2000, 2004a, b).

Another requirement that affects protein fitness is the 
kinetic accessibility of the native state, because a slow fold-
ing rate would increase the risk of misfolding and aggre-
gation. Since proteins are frustrated systems, namely unfa-
vourable interactions linger in their energy ground state 
(Ferreiro et al. 2014), they would be expected to display 
slow, non-exponential kinetics (Bryngelson and Wolynes 
1989). It was suggested that evolution minimises the degree 
of frustration of proteins to avoid kinetic traps (Bryngel-
son and Wolynes 1987). Even in the absence of consistent 
frustration, the folding process is regulated by an entropic 
barrier that determines folding rate. Such a barrier is usu-
ally overcome by nucleation of specific parts of the protein 
chain (Wetlaufer 1973; Abkevich et al. 1994). Both the fold-
ing nucleus (Mirny and Shakhnovich 2001) and the folding 
rate (Tzul et al. 2017) are usually highly conserved along 
evolutionary time.

The goal of the present work is to study the network 
of interactions between amino acids in the native state of 
reconstructed ancient proteins. In particular, we focused 
on the evolution of the network of strongly attractive two-
body contacts, which stabilises their native state, and on 
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frustrated contacts, which affect folding rates; the main 
intent is to study how contacts evolve as a function of 
evolutionary time. Understanding the evolution of the ele-
ments which stabilise proteins can be relevant both for 
fundamental reasons, for designing new proteins and for 
predicting the microbial resistance to drugs and vaccines 
(Russ et al. 2020).

A key problem in pursuing this goal is the quantifica-
tion of the interaction energies between amino acids. The 
majority of classical force fields are atom-based and usu-
ally require an explicit description of the dynamics of the 
solvent, thus are not easy to use for our purposes. We then 
chose to describe the interaction between amino acids with a 
2-bodies potential whose parameters are obtained from cor-
relations between mutations in alignments of extant homolo-
gous sequences (Morcos et al. 2011). In brief, the sequences 
of homologous sequences are regarded as equilibrium real-
isations of a Potts model of unknown parameters. Using 
techniques of inverse statistics, one can look for the best 
choice of the interaction energies that are compatible with 
the empirical correlation functions (Nguyen et al. 2017). 
Different approximations can be employed to implement the 
inversion (Morcos et al. 2011, 2013; Ekeberg et al. 2013; 
Figliuzzi et al. 2015; Cuturello et al. 2020), which anyway 
perform similarly to each other in obtaining the interaction 
energies (Franco et al. 2019). For this reason, we employed 
the original mean-field procedure (Morcos et  al. 2011) 
because of its computational efficiency. This strategy of cal-
culation of the interactions proved efficient in predicting the 
native conformation protein monomers (Morcos et al. 2011) 
and dimers (dos Santos et al. 2015), of their conformational 
fluctuations (Jana et al. 2014; Sutto et al. 2015), to study 
protein aggregation (Tian et al. 2015; Kassem et al. 2018), 
the effect of mutations in protein stability (Lui and Tiana 
2013; Contini and Tiana 2015), the identification of protein 
domains (Halabi et al. 2009; Granata et al. 2017) and the 
identification of interaction hotspots in transmembrane pro-
teins (Baldessari et al. 2020). The use of coevolutionary data 
to simulate protein evolution (de la Paz et al. 2020) was also 
useful to investigate the details of neutral evolution theory.

In this work, we analysed five protein families, recon-
structing their evolution and calculating the interaction 
network in every extant and reconstructed molecule, for a 

total of 890 proteins. We then analysed how the interaction 
network depends on evolutionary time.

Calculation of interaction energies 
along evolution

We studied the evolution of the energetic properties of 
β-lactamase (BLM), thioredoxin (TRD), nucleoside-diphos-
phate kinase (NDK), cytochrome c (CYC) and ribonuclease 
H (RDH). These are well-characterised protein families, they 
are evolutionarily quite old and contain a large number of 
sequences.

From the alignment of the extant proteins in each family, 
we calculated the interaction tensor εij(σ, ρ) with the mean-
field approach of ref. (Morcos et al. 2011), which is remark-
ably fast. The key idea is that pairs of residues which are 
close in space and that attract strongly each other undergo 
highly correlated mutations (while each of the two residues 
are not necessarily more conserved, see below). Inverting 
the problem, most correlated residues are expected to be 
close in space and strongly interacting, and this interaction 
can be quantified within an inverse Potts model (Nguyen 
et al. 2017).

Operatively, the “full” alignments are obtained from the 
Pfam database (Punta et al. 2012), those with less than 30% 
gaps are retained and those with sequence identity larger 
than 70% were down-weighted as in ref. (Morcos et al. 
2011). For all families, there are more than  104 sequences 
(cf. Table 1). We calculated one- and two-point frequencies 
using pseudocounts on the overall fraction of residues types 
(x = 0.5), on the fraction of residues types in the alignment 
(y = 0.1) and on the fraction of residues type in the specific 
position (z = 1.0) as in ref. (Lui and Tiana 2013).

Energies are expressed in units of the evolutive tempera-
ture (Shakhnovich and Gutin 1993a), which cannot be deter-
mined within the model and which does not relate straight-
forwardly to the environmental temperature, being expected 
to be smaller than that (Morcos et al. 2014). They are gauged 
setting to zero the interaction of the gap, regarded as the 21st 
type of residue, with all the others (Lui and Tiana 2013). 
The (N × N × 21 × 21)-tensor contains the contact energies 

Table 1  List of protein families 
used in this study

Protein family PFAM code # Pfam seq # extant seq # reconstr. seq AA length

β-Lactamase (BLM) PF00144 36325 31 40 267
Thioredoxin (TRD) PF00085 59245 92 95 107
Nucleoside-diphosphate 

kinase (NDK)
PF00334 11973 143 162 135

Cytochrome c (CYC) PF00034 23855 66 81 104
Ribonuclease H (RNH) PF00075 14837 75 105 151
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between all pair of sites for any kind of amino acid that they 
can host.

The sequence of ancient proteins of each family is recon-
structed through a maximum-likelihood scheme with PAML 
(Yang 2007) from the Pfam alignment and from the phy-
logenetic tree that defines the links between proteins over 
time (see, e.g. Fig. S1 in the Supp. Mat.). We selected a 
subset of extant sequences from the Pfam alignment that 
have mutually less than 20% of gaps (cf. Table 1), select-
ing a single protein per organism. When multiple proteins 
are associated with the same organism, that with minimum 
number of gaps is preferred. We then built a tree that defines 
the relationship between the selected organisms which host 
the proteins from TimeTree (Hedges et al. 2015), that also 
gives an estimate of the age of each reconstructed ancient 
sequence. The sequences of the proteins corresponding to 
the nodes of the tree, that is the ancestors of extant proteins 
belonging to the Pfam dataset, are then reconstructed with 
PAML. The resulting alignment is free of gaps.

For any sequence of a family, putative native conforma-
tions are predicted by homology modelling using Model-
ler (Webb and Sali 2016). Homologs of known structure 
are selected with E value < 0.01, giving a variable number 
of templates, usually between 1 and 5. Subsequently, the 
obtained structure is optimised through a short minimiza-
tion run with Gromacs (Van Der Spoel et al. 2005) using the 
Amber99SB force field.

The energy tensor is then filtered, setting to zero the ele-
ments that are not in contact in the (crystallographic or puta-
tive) native structure. Two residues are assumed to be in con-
tact if their Cβ (Cα in case of glycine) are closer than 6.5 Å.

As a consequence of this procedure, the energy tensor 
εij(σ, ρ) is the same for all proteins of each family (but in 
general different between different families); on the other 
hand, the projection of the four-dimensional tensor on the 
specific sequence to obtain the two-dimensional interaction 
matrix εij between its amino acids depends on the specific 
protein.

The distribution of the native contact energies between 
residues in all proteins belonging to each family is displayed 
in the upper-left panel of Fig. 1. It displays a sharp peak cen-
tred in zero and a long tail towards negative values. The dis-
tribution of energies over all sequences of a family is similar 
to that of single sequences (cf. Fig. S2 in the Supp. Mat.), so 
it can be regarded as representative of any sequence.

In Fig. 1a, it is also displayed the distribution of energies 
associated with a null model, obtained from a bootstrap pro-
cedure in which the residues at each position are randomly 
reshuffled among the sequences (thus keeping one-site fre-
quencies unchanged).

While the distribution of energies in the null model is 
rather symmetric, Gaussian-like and centred around negative 

values, that of protein energies displays a long tail towards 
negative elements, stemming from a sharp peak centred 
close to zero. Energies in proteins seem, thus, much more 
polarised than in the null model. On the side of positive 
energies, the distributions associated with the five protein 
families do not display any tail but a decay similar to that 
of the null model.

Considering that the distribution displayed in Fig. 1a 
is limited to interactions that are in contact in the native 
conformation, its shape supports the idea that proteins are 
stabilised by a core of strong interactions (those belong-
ing to the negative tail of the distribution), that constrain 
the rest of weakly interacting residues, corresponding to the 
peak around zero (Tiana et al. 1998; Mirny and Shakhnovich 
1999). This shape is also consistent with the asymmetrical 
distribution of mutational energies obtained for several pro-
teins (Tokuriki et al. 2007).

Thermodynamic stability of ancestral 
proteins

The stability of a protein is essentially determined by the 
energy of its native state, because the competing, denatured 
states are self-averaging, i.e. their thermodynamic properties 
do not depend on the detailed sequence (Shakhnovich and 
Gutin 1993a, b). In Fig. 1, we plotted the native energies EN 
of extant and reconstructed proteins as a function of evolu-
tionary time. This quantity is calculated simply summing 
all the coevolutionary energies of pairs of residues that are 
in contact; the lower the value of EN, the more stable is the 
protein.

It should be noted that the self-averaging character of the 
denatured state can be guaranteed only if the composition 
of the protein in terms of type of amino acids, especially 
in terms of hydrophobic residues, remains constant. The 
reconstructed proteins display a rather constant composi-
tion (cf. Fig. S3 in the Supp. Mat.) and, thus, comply with 
this requirement.

The trend of EN appears as system dependent. In the case 
of BLM, CYC and RNH, stability decreases towards recent 
proteins. In this case, the slope obtained from a linear fit 
of the energies as a function of time is significantly larger 
than that of a null model obtained from a random bootstrap 
of the calculated energies; also Kendall’s tau test indicates 
significant monotonicity (cf. the p values in Table 2). Also 
a different null model in which we calculate the energies of 
a random set of sequences gives in all cases a constant tem-
poral trend, with standard deviation on the slope < 10–5 My−1 
(cf., e.g. Fig. S4 in the Supp. Mat.).

In the case of NDK, the decreasing values of EN indicate 
a significant increase of stability with time; while for TRD, 
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we cannot spot any monotonic behaviour. Anyway, for all 
the considered proteins, the variability of EN is quite large 
(cf. the standard deviation in Table 2), even at similar times. 
The variability within different kingdoms is the same as that 
in the overall set of proteins (cf. Fig. S5 in the Supp. Mat.).

The overall tendency of proteins to destabilise towards 
the present age (but with several exceptions) has been 
already recognised (Wheeler et al. 2016). This tendency was 
explained either as a selective advantage of marginally stable 
proteins in terms of adapting to new functions (Bloom et al. 
2004) or as an entropic effect in sequence space (Taverna 
and Goldstein 2002). However, at variance with our find-
ings, the reconstructed proteins belonging to the TRD and 
NDK families display decreasing stability as measured by 

(a) (b)

(c) (d)

(e) (f)

Fig. 1  a With solid lines, the distribution of the interaction ener-
gies εij for the native contact of all family members of β-lactamase 
(BLM), thioredoxin (TRD), nucleoside diosolphate kinase (NDK), 
Cytochrome c (CYC) and Ribonuclease H (RDH). Dashed lines indi-

cate the energies obtained from a random bootstrap of the sequences. 
b–f the native energy EN of the extant and reconstructed proteins of 
each family as a function of evolutionary time; the continuous line is 
the linear fit, while the dashed line is a horizontal reference

Table 2  Summary of the energetic features of the protein families

It is listed the standard deviation of the native energies EN, the slope 
of the linear fit (cf. solid line in Fig. 1), the p value associated with 
the slope and calculated with a bootstrap and the p value associated 
with Kendall’s tau (the most significant are in bold)

Family Std. dev. Slope p value 
(bootstrap)

p value (Kendall)

BLM 55.8 0.02 0.038 0.030
TRD 6.6 3.0 × 10−4 0.259 0.084
NDK 12.8 − 2.1 × 10−3 0.001 0.053
CYC 14.6 0.011 < 10–6 0.003
RNH 17.5 8.3 × 10−3 < 10–6 7.8 × 10−5
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differential scanning calorimetry (Perez-Jimenez et al. 2011) 
and circular dichroism (Akanuma et al. 2013), respectively. 
One should consider that these conclusions are drawn by the 
analysis of 7 and 12 proteins, respectively, which is a small 
subset of the 187 and 305, respectively, considered in our 
analysis. For example, the analysis of the of the TRD pro-
teins reconstructed in ref. (Perez-Jimenez et al. 2011) shows 
that the experimental denaturation temperature is negatively 
correlated with the predicted native-state energy (cf. Fig. 2), 
as expected for the equilibrium of a two-state system, and 
thus, the model predicts for these seven proteins a decreasing 
stability along evolutionary time. This means not only that 
the model is able to predict the thermodynamic properties of 
proteins characterised by calorimetry, but also that selecting 
few proteins one can observe a trend that is different from 
that of the whole set. Note that filtering only the energies 
associated with native contacts is useful, because not doing 
it leads to an unphysical positive correlation between dena-
turation temperature and native energy (cf. Fig. S6).

Evolution of strongly attractive contacts

We defined operatively “strongly attractive” contacts as 
those with energy εij below a threshold εth such that globally 
5% of the contacts of the null models of the five proteins lie 
below εth. Using the energies displayed in Fig. 1, we found 
that εth = − 0.57.

The fraction a of strongly attractive contacts of extant and 
reconstructed proteins is displayed in Fig. 3. The value of a 
is significantly increasing for TRD and CYC (cf. Table 3). 
A linear fit of a as a function of time gives for these two 
proteins an increase rate of the order of  10–5 year−1. The p 

values obtained calculating the slopes of randomly boot-
strapped data are 0.002 and 0.001, respectively. We also 
computed the p values associated with the null hypothesis 
that the increase in a is not monotonic, using Kendall’s tau. 
The monotonicity of a is significant as well (cf. Table 3).

For the other three protein families (BLM, NDK and 
RNH), no statistically significant trend could be identified.

Interaction network analysis

We then analysed the network whose nodes are all the amino 
acids of each protein and whose links are the strongly attrac-
tive contacts (see, e.g. upper-left panel of Fig. 4). All net-
works display one, or few, large clusters and several orphans 
(i.e., nodes without links). The largest-cluster size (LCS) is 
in all cases significantly smaller than that of randomly gen-
erated proteins (p value < 10–6 and green points in Fig. 4). 
LCS increases from more ancient to more recent proteins 
(see blue points in Fig. 4) for all families in a statistically 
significant way, as calculated from a random bootstrap of 
the energies of reconstructed proteins (see Table 3). Also, 
the comparison with randomly generated sequences give p 
values < 10–6 (see Fig. S7 in the Supp. Mat.). The number of 
orphans and the clustering coefficient are significantly larger 
than those expected from random networks, but they do not 
display a regular temporal trend (cf. Fig. S8 in the Supple-
mentary Material). These data agree with the literature that 
all studied proteins display a core of contacts (Mirny and 
Shakhnovich 1999; Tokuriki et al. 2007) that strongly stabi-
lise the native state (often, but not always hydrophobic) and 
suggest that, although the total number of strongly attractive 
contacts does not always increase along evolution, the set of 
strongly stabilising residues does.

The above results are quite robust with respect to the 
threshold εth used to define the strongly attractive contacts 
(cf., e.g. Fig. S9 in the Supp. Mat.).

The evolution of the position of the amino acids involved 
in the strongly attractive contacts can be found in Fig. 5, that 
displays the sum Ei of attractive interactions for each site i. 
One can notice that strongly interacting sites (whatever are 
the residues hosted there) are rather conserved. Those pre-
sent in ancient proteins tend to remain in extant proteins and 
sometimes new ones are added during evolution.

Interestingly, the correlation between strongly interacting 
and highly conserved residues in the alignment is poor (cf. 
Fig. S10 in the Supp. Mat.). In particular, there are many 
more highly conserved sites than strongly interacting sites, 
suggesting that there could be several reasons why residues 
are evolutionary conserved (Mirny and Shakhnovich 1999).
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Fig. 2  The denaturation temperatures Tm of the seven reconstructed 
TRD proteins of ref. (Perez-Jimenez et  al. 2011) as a function of 
the native energy EN calculated with the present model. The label-
ling corresponds to that of the referenced article. The dashed line 
indicates a linear fit, expected for a two-state model. The correlation 
coefficient is − 0.63. The increase of energy with respect to time has a 
slope of 0.6 My−1
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Evolution of frustrated contacts

Frustration is the property of some complex systems not 
to be able to get rid of unfavourable interactions even in 

the ground state. As discussed by Phil Anderson in ref. 
(Anderson 1978), it is not straightforward to quantify if a 
system is frustrated if not for spin systems. His suggestion 
was to identify the ground state of the system, to partition 

BLM

a

NDK

a

CYC

a

TRD

a

RNH

a

Fig. 3  The fraction a of strongly attractive contacts, defined as those contacts whose energy is lower than εth, for extant and reconstructed pro-
teins

Table 3  Summary of the 
evolution of strongly attractive 
contacts for the five protein 
families (first column)

It is reported for the fraction a of strongly attractive contacts and for the largest-cluster size (LCS) the slope 
of the linear fit and the p values associated with a bootstrap of the protein age and with Kendall’s tau test
The most significant are in bold

Family a LCS

Slope p (bootstrap) p (Kendall) Slope p (bootstrap) p (Kendall)

BLM − 3.3 × 10−6 0.16 0.23 4.2 × 10−5 0.006 0.002
TRD 5.1 × 10−6 0.002 0.006 5.8 × 10−5 < 10−6 2 × 10−8

NDK 6.4 × 10−7 0.27 0.04 1.4 × 10−5 0.05 0.2
CYC 1.5 × 10−5 0.001 0.003 3.9 × 10−5 0.007 0.004
RNH − 1.6 × 10−7 0.45 0.11 2.7 × 10−5 0.0001 3 × 10−5
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it into subsystems and to quantify the scaling of the inter-
action energy between them as a function of the area of the 
separation surface. For finite-range interactions, as those 
acting between amino acids, the scaling is expected to be 
linear if the system is ferromagnetic-like. If it is frustrated, 
one expects a sub-linear scaling because of the compensa-
tion between attractive and repulsive interactions.

In the upper-left panel of Fig. 6 it is displayed, as an 
example, the square of the interfacial energy between the 
segments of various length L of a BLM and the rest of the 
protein. The fact that the mean square energy E2(L) is a 
decreasing function supports the accepted idea that proteins 
are frustrated systems.

The shape of E2(L) displays a power law 1∕L� followed 
by a drop. The largest is � , the more frustrated is the system; 
� = 0 for a ferromagnetic-like system. The values of � for 

the extant and reconstructed proteins are displayed in the 
various panels of Fig. 6. In the case of BLM and RNH, the 
degree of frustration increases with time in a significant way; 
while for the other three analysed proteins, a specific trend 
cannot be established (cf. the p values in Table 4).

Another way of quantifying the degree of frustration is 
counting the number of contacts with energy εij > 0, thus 
relying on the gauge we chose that sets the zero to the inter-
action of any residue with gaps. The fraction f of frustrated 
contacts over the total number of contacts is displayed in 
Fig. 7. TRD and CYC have a significant monotonic behav-
iour, decreasing for the former and increasing for the latter; 
while the other proteins do not show significant monotonic-
ity (cf. the p values in Table 5; the most significant are in 
bold).

LC
S

LC
S

LC
S

LC
S

LC
S

BLM

TRD

CYC RNH

NDK

Fig. 4  The upper-left panel is an example of network of strongly 
attractive interactions of BLM. The other panels display (in blue) the 
largest-cluster size (LCS), normalised to the total number of nodes, 

of extant and reconstructed proteins. Green points indicate the mean 
LCS of proteins with randomly reshuffled strongly attractive contacts
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Notice that � and f do not provide exactly the same infor-
mation, because the scaling of the interfacial energy depends 
not only on the number of frustrated contacts but also on 
their spatial arrangement.

Overall, these data do not support a regular evolutionary 
trend for the number of frustrated contacts.

We then studied how frustration is localised within pro-
teins. In Fig. 8, it is shown for each family the number fi of 
frustrated contacts in each site, averaged over all proteins 
of the same age. All proteins appear to display few sites 
concentrating most frustration and these sites are highly con-
served along evolution. In few cases (three in TRD, three 
in CYC, one in RNH) sites that were not frustrated in more 
ancient proteins become frustrated. The opposite is never 
observed.

Frustrated contacts tend to aggregate into clusters, see the 
network of frustrated interactions in Fig. 9. As a result, most 
amino acids are not connected by frustrated contacts, i.e. 
they are “orphans”. The number of orphans is much larger 
than that one would observe in a random graph with the 
same number of nodes and links (p value < 10–6, see also 
Fig. 9). In fact, random networks display a wide distribution 
of cluster sizes with a negligible number of orphans (see, 
e.g. Fig. S11 in the Supp. Mat.), while proteins display few 
main clusters and a large number of orphans. The amount of 
orphans either decreases with time (as in CYC and NDK) or 
fluctuates non-monotonically (as BLM, TRD and RNH, see 
Fig. 9 and the p values in Table 5).

The size of the largest cluster is comparable to the one of 
a random network and does not display a regular trend with 
respect to evolutionary time (cf. Fig. S12 in the Supp. Mat.). 
On the other hand, its clustering coefficient is significantly 
larger than that of a random cluster and either decreases sig-
nificantly with time (for TRD and NDK) or does not display 
a specific trend (for the other proteins, cf. Fig. S13).

Summing up, frustrated contacts concentrate into few 
clusters that are not particularly large but are highly con-
nected. There is a signal, although weak, that this tendency 
increases towards more recent proteins.

A popular tool to study frustration contacts within pro-
teins is the frustratometer developed by Ferreiro and cow-
orkers (Parra et  al. 2016). We have performed a rough 
comparison of the pattern of frustrated contacts of the 
coevolutionary model with that obtained from the online 
version of the frustratometer. The results of the compari-
son are highly family dependent; for example, they are quite 
good in the case of TRD and much worse for NDK (cf. Fig. 
S14 in the Supp. Mat.).

Discussion and conclusions

We studied the energetic properties of five protein fami-
lies and of their reconstructed ancestors; that is in total 
890 proteins. The two key tools that permitted this analy-
sis are coevolutionary potentials and the reconstruction 

Ei

Ei Ei

Ei
Ei

Fig. 5  The evolution of strongly interacting contacts in each site of the five families under study
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algorithms of ancient proteins. Coevolutionary potentials 
are an efficient and realistic way of describing the interac-
tions that stabilise proteins at the scale of amino acids. 
They are predictive of many protein features (Halabi et al. 
2009; Morcos et al. 2011, 2013; Lui and Tiana 2013; Jana 

et al. 2014; Tian et al. 2015; Contini and Tiana 2015; dos 
Santos et al. 2015; Sutto et al. 2015; Granata et al. 2017; 
Kassem et  al. 2018; Baldessari et  al. 2020), but need 
large sequence alignments as input, and, thus, cannot be 
applied to all protein families. Moreover, they suffer of 

α

α

αα

α

Time (My)

Time (My)

Time (My)Time (My)

Time (My)

Fig. 6  The scaling of the square interfacial energies E2 between seg-
ments of a BLM (GI number: gi116251120) of length L and the rest 
of the protein as a function of L, normalised by L2 and plotted in log-

arithmic scale. The dashed line is the mean square energy. The other 
plots display the scaling coefficient α of the mean square energy, cal-
culated in the linear region, for the proteins of the five families

Table 4  The slope of the linear 
regression of the number of 
the scaling coefficient α of the 
interfacial energies and of the 
number of frustrated contacts 
as a function of evolutionary 
time and the p values calculated 
on the slopes with a random 
bootstrap and with Kendall’s 
tau test

Family α # frustrated contacts

Slope p (bootstrap) p value (Kendall) Slope p (bootstrap) p value (Kendall)

BLM 1.5 × 10−5 0.009 0.23 3.5 × 10−7 0.06 0.41
TRD − 2.2 × 10−6 0.095 0.43 − 6.2 × 10−6 0.012 < 10–6

NDK 3.6 × 10−6 0.17 0.36 6.4 × 10−7 0.09 0.29
CYC 8.0 × 10−6 0.25 0.45 1.5 × 10−5 0.006 0.001
RNH 6.1 × 10−6 0.006 0.009 − 1.6 × 10−7 0.22 0.4
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systematic errors in estimating the interaction energy of 
residues involved in active sites, that could coevolve for 
reasons which are not related to the stabilisation of the 
native state and, thus, cannot be described in terms of the 
inverse Potts model. In fact, while one would expect that 

the interactions of the active site can be frustrated, the 
model predicts erroneously strongly attractive interactions 
(see Fig. S15 in the Supp. Mat.).

Also, the maximum-likelihood reconstruction of ancient 
proteins is powerful but not error free. In fact, it was pointed 

f

BLM

f

TRD

f

NDK CYC

f

f

RNH

Fig. 7  The number f of frustrated contacts as a function of evolutionary time. The solid line indicates the result of a linear fit

Table 5  The slope and the 
p values associated with the 
number of orphans and the 
clustering coefficient

The most significant are in bold

Family # of orphans Clustering coefficient

Slope p (bootstrap) p value (Kendall) Slope p (bootstrap) p value 
(Kendall)

BLM 5.8 × 10−6 0.26 0.10 0.002 0.14 0.4
TRD 8.7 × 10−7 0.37 0.76 − 5.8 × 10−6 0.04 0.02
NDK − 8.2 × 10−6 0.001 7.1 × 10−5 − 4.5 × 10−6 0.01 0.08
CYC − 3.1 × 10−5 0.017 0.003 − 3.9 × 10−6 0.21 0.24
RNH 2.0 × 10−6 0.29 0.09 3.2 × 10−7 0.47 0.25
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out that when different stabilising mutations accumulate 
along different lineages, the maximum-likelihood recon-
struction could incorrectly incorporate all of the stabilis-
ing mutations in the same ancient sequence, resulting in an 
over-stabilised ancestor (Wheeler et al. 2016). An indication 
that this is not the case here is that in ancient reconstructed 
sequences, we do not observe an increase of hydrophobic 
residues, which are expected to be the most stabilising ones. 
Anyway, we observe various types of behaviour, with fami-
lies becoming more stable and families becoming less sta-
ble along evolution. In the literature, the large majority of 
proteins reconstructed by maximum-likelihood algorithms 
and studied biochemically were shown to become less sta-
ble towards recent times (Gaucher et al. 2008; Perez-Jime-
nez et al. 2011; Carstensen et al. 2012; Risso et al. 2013; 
Akanuma et al. 2013); this behaviour was explained by an 
increased environmental temperature in the pre-Cambrian 
era, which imposed a larger stability to proteins. However, 
these studies involved few proteins, to be compared with our 
hundreds. Moreover, we have also shown that the variability 
in thermodynamic stability is very large even in proteins of 
similar ages, and consequently drawing general conclusions 
from a small sampling is quite dangerous.

We then focused the attention to the contacts which 
mostly stabilise the native state of the proteins. Their 

number does not seem to vary systematically along evolu-
tion. However, they form in each protein a small, highly 
interconnected cluster. The size of this cluster increases 
towards recent times, including more and more residues. 
This is in agreement with the observation that more recent 
proteins display a more highly connected core (Tiana et al. 
2004b). The analysis of amino-acid mutations (Tokuriki 
et al. 2007) and of protein models (Tiana et al. 2004c) 
suggests that the stabilisation energy in proteins is not 
distributed uniformly but is concentrated in a small core. 
This analysis of reconstructed proteins suggests that the 
size of the core increases with time.

Also frustrated interactions, that is interactions that 
evolution could not optimise, are an important feature of 
proteins. We quantified the degree of frustration of pro-
teins using Phil Anderson’s original definition and showed 
that it is equivalent to the calculation of the number of 
interactions with null energy, using gaps in the alignment 
to gauge the zero of the interactions in the derivation of 
the energy from coevolution (Lui and Tiana 2013). Also 
frustrated contacts concentrate into few small, highly con-
nected clusters.

The present data do not support the idea that the total 
number of frustrated interactions is minimised by evolu-
tion, as suggested by the principle of minimal frustration 
(Bryngelson and Wolynes 1987), but only that they tend to 

fi
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fi

NDK

fi

CYC

fi

RNH

Fig. 8  The number fi of frustrated contacts in each site i of the protein as a function of evolutionary time, averaged over all proteins in the same 
age
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clusterise more. Of course, this does not exclude that mini-
misation of frustration could take place in the pre-biotic 
period.
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