10,884 research outputs found

    CFD-DEM SIMULATION OF SYNGAS-TO-METHANE PROCESS IN A FLUIDIZED-BED REACTOR

    Get PDF
    The CFD-DEM coupled approach was used to simulate the gas-solid reacting flows in a lab-scale fluidized-bed reactor for syngas-to-methane (STM) process. The simulation results captured the major features of the reactor performance including unwanted defluidization. The fluidized-bed reactor showed good performances, such as in preventing the catalyst particles from overheating and sintering

    Power grid-oriented cascading failure vulnerability identifying method based on wireless sensors

    Get PDF
    In our paper, we study the vulnerability in cascading failures of the real-world network (power grid) under intentional attacks. Here, we use three indexes (B, K, k-shell) to measure the importance of nodes; that is, we define three attacks, respectively. Under these attacks, we measure the process of cascade effect in network by the number of avalanche nodes, the time steps, and the speed of the cascade propagation. Also, we define the node’s bearing capacity as a tolerant parameter to study the robustness of the network under three attacks. Taking the power grid as an example, we have obtained a good regularity of the collapse of the network when the node’s affordability is low. In terms of time and speed, under the betweenness-based attacks, the network collapses faster, but for the number of avalanche nodes, under the degree-based attack, the number of the failed nodes is highest. When the nodes’ bearing capacity becomes large, the regularity of the network’s performances is not obvious. The findings can be applied to identify the vulnerable nodes in real networks such as wireless sensor networks and improve their robustness against different attacks

    The development of a rapid SYBR one step real-time RT-PCR for detection of porcine reproductive and respiratory syndrome virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prompt detection of PRRSV in the field samples is important for effective PRRS control, thereby reducing the potentially serious economic damage which can result from an outbreak. In this study, a rapid SYBR-based, one step real-time RT-PCR quantitative reverse transcription PCR (qRT-PCR) has been developed for the detection of porcine reproductive and respiratory syndrome virus (PRRSV). Primers were designed based on the sequence of highly conservative region of PRRSV N gene.</p> <p>Results</p> <p>The sensitivity of the real-time qRT-PCR assay was achieved through PRRSV ch-1a RNA for the generation of a standard curve. The detection limit of the assay was found to be 9.6 RNA copies per reaction mixture. This assay had excellent intra- and inter-assay reproducibility as in total 65 field samples were screened for the presence of PRRSV by conventional RT-PCR in parallel with qRT-PCR, and the detection rate increased from 60.0% to 76.9%. Moreover, the specificity result indicated that this assay could reliably differentiate PRRSV from the other swine viral diseases, such as classical swine fever virus (CSFV), swine vesicular disease virus (SVDV) and vesicular exanthema of swine virus (VESV).</p> <p>Conclusion</p> <p>The real-time qRT-PCR assay described in this report allows the rapid, specific and sensitive laboratory detection of PRRSV in field samples.</p

    Improved particle swarm optimization algorithm for multi-reservoir system operation

    Get PDF
    AbstractIn this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm

    The Outbreak Evaluation of COVID-19 in Wuhan District of China

    Full text link
    There were 27 novel coronavirus pneumonia cases found in Wuhan, China in December 2019, named as 2019-nCoV temporarily and COVID-19 formally by WHO on 11 February, 2020. In December 2019 and January 2020, COVID-19 has spread in large scale among the population, which brought terrible disaster to the life and property of the Chinese people. In this paper, we will first analyze the feature and pattern of the virus transmission, and discuss the key impact factors and uncontrollable factors of epidemic transmission based on public data. Then the virus transmission can be modelled and used for the inflexion and extinction period of epidemic development so as to provide theoretical support for the Chinese government in the decision-making of epidemic prevention and recovery of economic production. Further, this paper demonstrates the effectiveness of the prevention methods taken by the Chinese government such as multi-level administrative region isolation. It is of great importance and practical significance for the world to deal with public health emergencies.Comment: 7 pages, 18 figure

    Time evolution of Einstein-Maxwell-scalar black holes after a thermal quench

    Full text link
    We employ the holographic quench technique to drive Einstein-Maxwell-scalar (EMs) black holes out of equilibrium and study the real-time dynamics therein. From the fully nonlinear dynamical simulations, a dynamically unstable Reissner-Nordstro¨\ddot{\text{o}}m anti-de Sitter (RN-AdS) black hole can be scalarized spontaneously after an arbitrarily small quench. On the other hand, a dynamically stable scalarized black hole can be descalarized after a quench of sufficient strength. Interestingly, on the way to descalarization, the scalarized black hole behaves like a holographic superfluid, undergoing a dynamical transition from oscillatory to non-oscillatory decay. Such behaviors are related to the spectrums of quasi-normal modes of scalarized black holes, where the dominant mode migrates toward the imaginary axis with increasing quench strength. In addition, due to the Z2\mathbb Z_{2}-symmetry preserved by the model, the ground state is degenerate. We find that there exists a threshold for the quench strength that induces a dynamical transition of the gravitational system from one degenerate ground state to the other. Near the threshold, the gravitational system is attracted to an excited state, that is, a RN-AdS black hole with dynamical instability

    Understanding the chemical evolution of blue Edge-on Low Surface Brightness Galaxies

    Full text link
    We present a sample of 330 blue edge-on low surface brightness galaxies (ELSBGs). To understand the chemical evolution of LSBGs, we derived the gas-phase abundance and the [α\alpha/Fe] ratio. Compared with star-forming galaxies, ELSBGs show a flatter trend in the mass-metallicity (M∗−ZM_*-Z) relation, suggesting that the oxygen abundance enhancement is inefficient. We focus on 77 ELSBGs with HI data and found the closed-box model can not explain their gas fraction and metallicity relation, implying that infall and/or outflow is needed. We derived the [α\alpha/Fe] ratio of normal ELSBG (<< 109.5^{9.5}M⊙\odot) and massive ELSBG (>=>= 109.5^{9.5}M⊙\odot) using single stellar population grids from MILES stellar library. The mean [α\alpha/Fe] ratios are 0.18 and 0.4 for normal ELSBG and massive ELSBG, respectively. We discussed that the long time-scale of star-formation, and/or metal-rich gas outflow event caused by SNe Ia winds are likely responsible for the α\alpha-enhancement of massive ELSBGs.Comment: 9 pages, 9 figures, Accepted for publication in Ap
    • …
    corecore