297 research outputs found

    ごみ処理場から排出される濾過液の特性と処理技術の研究

    Get PDF
    Continuing industrial and commercial growth in many countries around the world in the past decades leads to rapid increase of both the municipal and industrial solid waste. Landfill is still the primary and convenient method to dispose municipal solid waste. However, a large amount of leachates will be generated inevitably from a landfill site, which has been treated as a major problem of landfill disposal of municipal solid waste. Landfill leachate is a high-concentrated organic wastewater in which complex components are contained. Surroundings will be polluted severely if leachate was discharged out of landfill without any treatment. Generation source and characteristics of waste leachate from Jiyuan landfill were studied, the results show that leachate includes mainly water contained in waste itself, water created by organism through aerobic and anaerobic decomposition, natural rain water and runoff. The conclusion was drawn that merge treatment and leachate injection are feasible in both technology and economy after testing its main component and analyzing several familiar treatment technologies such as biological technique, physical-chemical method, land treatment and group disposal techniques and so on.特集 : 「資源、新エネルギー、環境、防災研究国際セミナー

    Molecular Motions of the Outer Ring of Charge of the Sodium Channel: Do They Couple to Slow Inactivation?

    Get PDF
    In contrast to fast inactivation, the molecular basis of sodium (Na) channel slow inactivation is poorly understood. It has been suggested that structural rearrangements in the outer pore mediate slow inactivation of Na channels similar to C-type inactivation in potassium (K) channels. We probed the role of the outer ring of charge in inactivation gating by paired cysteine mutagenesis in the rat skeletal muscle Na channel (rNav1.4). The outer charged ring residues were substituted with cysteine, paired with cysteine mutants at other positions in the external pore, and coexpressed with rat brain β1 in Xenopus oocytes. Dithiolthreitol (DTT) markedly increased the current in E403C+E758C double mutant, indicating the spontaneous formation of a disulfide bond and proximity of the α carbons of these residues of no more than 7 Å. The redox catalyst Cu(II) (1,10-phenanthroline)3 (Cu(phe)3) reduced the peak current of double mutants (E403C+E758C, E403C+D1241C, E403C+D1532C, and D1241C+D1532C) at a rate proportional to the stimulation frequency. Voltage protocols that favored occupancy of slow inactivation states completely prevented Cu(phe)3 modification of outer charged ring paired mutants E403C+E758C, E403C+D1241C, and E403C+D1532C. In contrast, voltage protocols that favored slow inactivation did not prevent Cu(phe)3 modification of other double mutants such as E403C+W756C, E403C+W1239C, and E403C+W1531C. Our data suggest that slow inactivation of the Na channel is associated with a structural rearrangement of the outer ring of charge

    Comparison of ultrasound−based ADNEX model with magnetic resonance imaging for discriminating adnexal masses: a multi-center study

    Get PDF
    ObjectivesThe ADNEX model offered a good diagnostic performance for discriminating adnexal tumors, but research comparing the abilities of the ADNEX model and MRI for characterizing adnexal tumors has not been reported to our knowledge. The aim of this study was to evaluate the diagnostic accuracy of the ultrasound-based ADNEX (Assessment of Different NEoplasias in the adneXa) model in comparison with that of magnetic resonance imaging (MRI) for differentiating benign, borderline and malignant adnexal masses.MethodsThis prospective study included 529 women with adnexal masses who underwent assessment via the ADNEX model and subjective MRI analysis before surgical treatment between October 2019 and April 2022 at two hospitals. Postoperative histological diagnosis was considered the gold standard.ResultsAmong the 529 women, 92 (17.4%) masses were diagnosed histologically as malignant tumors, 67 (12.7%) as borderline tumors, and 370 (69.9%) as benign tumors. For the diagnosis of malignancy, including borderline tumors, overall agreement between the ADNEX model and MRI pre-operation was 84.9%. The sensitivity of the ADNEX model of 0.91 (95% confidence interval [CI]: 0.85–0.95) was similar to that of MRI (0.89, 95% CI: 0.84–0.94; P=0.717). However, the ADNEX model had a higher specificity (0.90, 95% CI: 0.87–0.93) than MRI (0.81, 95% CI: 0.77–0.85; P=0.001). The greatest sensitivity (0.96, 95% CI: 0.92–0.99) and specificity (0.94, 95% CI: 0.91–0.96) were achieved by combining the ADNEX model and subjective MRI assessment. While the total diagnostic accuracy did not differ significantly between the two methods (P=0.059), the ADNEX model showed greater diagnostic accuracy for borderline tumors (P<0.001).ConclusionThe ultrasound-based ADNEX model demonstrated excellent diagnostic performance for adnexal tumors, especially borderline tumors, compared with MRI. Accordingly, we recommend that the ADNEX model, alone or with subjective MRI assessment, should be used for pre-operative assessment of adnexal masses

    A Novel Model of Atherosclerosis in Rabbits Using Injury to Arterial Walls Induced by Ferric Chloride as Evaluated by Optical Coherence Tomography as well as Intravascular Ultrasound and Histology

    Get PDF
    This study aim was to develop a new model of atherosclerosis by FeCl3-induced injury to right common carotid arteries (CCAs) of rabbits. Right CCAs were induced in male New Zealand White rabbits (n = 15) by combination of a cholesterol-rich diet and FeCl3-induced injury to arterial walls. The right and left CCAs were evaluated by histology and in vivo intravascular ultrasound (IVUS) and optical coherence tomography (OCT) examinations of 24 hours (n = 3), 8 weeks (n = 6), and 12 weeks (n = 6) after injury. Each right CCA of the rabbits showed extensive white-yellow plaques. At eight and 12 weeks after injury, IVUS, OCT, and histological findings demonstrated that the right CCAs had evident eccentric plaques. Six plaques (50%) with evident positive remodeling were observed. Marked progression was clearly observed in the same plaque at 12 weeks after injury when it underwent repeat OCT and IVUS. We demonstrated, for the first time, a novel model of atherosclerosis induced by FeCl3. The model is simple, fast, inexpensive, and reproducible and has a high success rate. The eccentric plaques and remodeling of plaques were common in this model. We successfully carried out IVUS and OCT examinations twice in the same lesion within a relatively long period of time

    Metabolism of Salvianolic Acid A and Antioxidant Activities of Its Methylated Metabolites

    Get PDF
    ABSTRACT This study investigated the metabolism of salvianolic acid A (SAA) both in vivo and in vitro. Liquid chromatography-mass spectrometry analysis of drug-containing rat bile samples and bile samples hydrolyzed by glucuronidase revealed a series of methylated conjugates of SAA and its glucuronides, as well as the predominance of the methylation pathway of SAA in rats. For the first time, four major methylated metabolites present in vivo were prepared for structure characterization and bioactivity evaluation using in vitro coincubation systems with rat hepatic cytosol protein as the enzyme donor. By using nuclear magnetic resonance imaging and other spectroscopic methods, these metabolites were unambiguously elucidated as 3-O-methyl-SAA (M1), 39-O-methyl-SAA (M2), 3,30-O-dimethyl-SAA (M3), and 39,30-O-dimethyl-SAA (M4), respectively. Along with results from the enzyme inhibition study, selective formation of these meta-O-methylated derivatives indicated that catechol O-methyltransferase (COMT) is responsible for methylated transformation of SAA. All of these metabolites displayed fairly high antioxidant potency against in vitro rat liver lipid peroxidation with halfmaximal inhibitory concentrations that were much lower than those of the positive controls and even SAA. Overall, the results from this study demonstrate that SAA is a metabolically unstable compound that undergoes rapid methylation metabolism catalyzed by COMT, and these generated O-methylated metabolites may be largely responsible for its in vivo pharmacological effects

    Loss of NLRP3 reduces oxidative stress and polarizes intratumor macrophages to attenuate immune attack on endometrial cancer

    Get PDF
    IntroductionThe interaction between endometrial cancer (EMC) cells and intratumoral macrophages plays a significant role in the development of the disease. PYD domains-containing protein 3 (NLRP3) inflammasome formation triggers caspase-1/IL-1β signaling pathways and produces reactive oxygen species (ROS) in macrophages. However, the role of NLRP3-regulated ROS production in macrophage polarization and the subsequent growth and metastasis of EMC remains unknown.MethodsWe conducted bioinformatic analysis to compare NLRP3 levels in intratumoral macrophages from EMC and normal endometrium. In vitro experiments involved knocking out NLRP3 in macrophages to shift the polarization from an anti-inflammatory M1-like phenotype to a proinflammatory M2-like phenotype and reduce ROS production. The impact of NLRP3 depletion on the growth, invasion, and metastasis of co-cultured EMC cells was assessed. We also evaluated the effect of NLRP3 depletion in macrophages on the growth and metastasis of implanted EMC cells in mice.ResultsOur bioinformatic analysis showed significantly lower NLRP3 levels in intratumoral macrophages from EMC than those from normal endometrium. Knocking out NLRP3 in macrophages shifted their polarization to a proinflammatory M2-like phenotype and significantly reduced ROS production. NLRP3 depletion in M2-polarized macrophages increased the growth, invasion, and metastasis of co-cultured EMC cells. NLRP3 depletion in M1-polarized macrophages reduced phagocytic potential, which resulted in weakened immune defense against EMC. Additionally, NLRP3 depletion in macrophages significantly increased the growth and metastasis of implanted EMC cells in mice, likely due to compromised phagocytosis by macrophages and a reduction in cytotoxic CD8+ T cells.DiscussionOur results suggest that NLRP3 plays a significant role in regulating macrophage polarization, oxidative stress, and immune response against EMC. NLRP3 depletion alters the polarization of intratumoral macrophages, leading to weakened immune defense against EMC cells. The reduction in ROS production by the loss of NLRP3 may have implications for the development of novel treatment strategies for EMC

    Histidine‐mediated synthesis of chiral cobalt oxide nanoparticles for enantiomeric discrimination and quantification

    Get PDF
    Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co3O4@L-His and Co3O4@D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated. Interestingly, these CTMOs exhibit remarkable and tunable chiroptical properties. Their analysis by x-ray photoelectron, Fourier transform infrared, and ultraviolet-visible absorption spectroscopy indicates that the ratio of Co2+/Co3+ and their interactions with the imidazole groups of histidine are behind their chiral properties. In addition, the use of chiral Co3O4 nanoparticles for the development of sensitive, rapid, and enantioselective circular dichroism-based sensors is demonstrated, allowing direct molecular detection and discrimination between cysteine or penicillamine enantiomers. The circular dichroism response of the chiral Co3O4 exhibits a limit of detection and discrimination of cysteine and penicillamine enantiomers as low as 10 µm. Theoretical calculations suggest that the ligand exchange and the coexistence of both species adsorbed on the oxide surface are responsible for the enantiomeric discrimination. This research will enrich the synthetic approaches to obtain CTMOs and enable the extension of the applications and the discovery of new chiroptical properties.National Natural Science Foundation of China | Ref. 22271257Agencia Estatal de Investigación | Ref. PID2019-108954RB-I00Xunta de Galicia | Ref. ED431C 2020/09Universidade de Vigo/CISU
    corecore