2,382 research outputs found
Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins
The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction
A Statistical Model for Estimating Maternal-Zygotic Interactions and Parent-of-Origin Effects of QTLs for Seed Development
Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants
Silicon Mie Resonators for Highly Directional Light Emission from monolayer MoS2
Controlling light emission from quantum emitters has important applications
ranging from solid-state lighting and displays to nanoscale single-photon
sources. Optical antennas have emerged as promising tools to achieve such
control right at the location of the emitter, without the need for bulky,
external optics. Semiconductor nanoantennas are particularly practical for this
purpose because simple geometries, such as wires and spheres, support multiple,
degenerate optical resonances. Here, we start by modifying Mie scattering
theory developed for plane wave illumination to describe scattering of dipole
emission. We then use this theory and experiments to demonstrate several
pathways to achieve control over the directionality, polarization state, and
spectral emission that rely on a coherent coupling of an emitting dipole to
optical resonances of a Si nanowire. A forward-to-backward ratio of 20 was
demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2
by optically coupling it to a Si nanowire
Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study
<p>Abstract</p> <p>Background</p> <p>Sorafenib is the first agent that has demonstrated an improved overall survival benefit in advanced hepatocellular carcinoma (HCC), setting a new standard for first-line treatment. However, no one has yet been able to predict sensitivity to sorafenib. Pre-treatment pERK level has been shown to be associated with favorable response to such therapy in a phase II clinical study, indicating that pERK may be a potential biomarker for treatment of HCC with sorafenib.</p> <p>Methods</p> <p>The effects of sorafenib and 5-fluorouracil (5-FU) on cell proliferation were evaluated by cell viability assays in four HCC cell lines (SMMC-7721, MHCC97-L, MHCC97-H and HCCLM6) with different metastatic potential and basal pERK expression levels. Expression levels of pERK were determined by immunocytochemical quantification together with western blot analysis, and pERK density values were also calculated. Correlation analyses were then carried out between the IC<sub>50 </sub>values of drugs and pERK density values. After basal ERK phosphorylation was down-regulated with U0126 in MHCC97-H cells, cellular responsiveness to sorafenib was assessed by cell viability assay.</p> <p>Results</p> <p>Basal pERK levels increased stepwise in cell lines in accordance with their metastatic potential. Sorafenib inhibited ERK phosphorylation in a dose-dependent manner in all four cell lines at a concentration between 5 and 20 μM, but the degree of inhibition was significantly different according to their basal pERK expression level (<it>P </it>< 0.0001). In contrast, no significant change was observed after 5-FU treatment. Correlation analyses between the IC<sub>50 </sub>values and pERK densities revealed that the effects of sorafenib on cell proliferation were significantly correlated with basal pERK levels (Spearman r = -0.8671, <it>P </it>= 0.0003). Resistance to 5-FU was also significantly associated with basal pERK expression in these HCC cell lines (Spearman r = 0.7832, <it>P </it>= 0.0026). After the basal ERK phosphorylation level in MHCC97-H cells was reduced with U0126, they were significantly less sensitive to sorafenib-mediated growth inhibition, with an IC<sub>50 </sub>of 17.31 ± 1.62 μM versus 10.81 ± 1.24 μM (<it>P </it>= 0.0281).</p> <p>Conclusion</p> <p>In this <it>in vitro </it>study, pERK was confirmed to be a potential biomarker predictive of sensitivity to sorafenib in treating HCC. The RAF/MEK/ERK pathway may be involved in drug resistance to traditional chemotherapy in HCC.</p
Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper
In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacterium-mediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of T0, T1 and T2 peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T0 peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant
Genome-wide regulation of innate immunity by juvenile hormone and 20-hydroxyecdysone in the Bombyx fat body
<p>Abstract</p> <p>Background</p> <p>Insect innate immunity can be affected by juvenile hormone (JH) and 20-hydroxyecdysone (20E), but how innate immunity is developmentally regulated by these two hormones in insects has not yet been elucidated. In the silkworm, <it>Bombyx mori</it>, JH and 20E levels are high during the final larval molt (4 M) but absent during the feeding stage of 5<sup>th </sup>instar (5 F), while JH level is low and 20E level is high during the prepupal stage (PP). Fat body produces humoral response molecules and hence is considered as the major organ involved in innate immunity.</p> <p>Results</p> <p>A genome-wide microarray analysis of <it>Bombyx </it>fat body isolated from 4 M, 5 F and PP uncovered a large number of differentially-expressed genes. Most notably, 6 antimicrobial peptide (AMP) genes were up-regulated at 4 M versus PP suggesting that <it>Bombyx </it>innate immunity is developmentally regulated by the two hormones. First, JH treatment dramatically increased AMP mRNA levels and activities. Furthermore, 20E treatment exhibited inhibitory effects on AMP mRNA levels and activities, and RNA interference of the 20E receptor <it>EcR</it>-<it>USP </it>had the opposite effects to 20E treatment.</p> <p>Conclusion</p> <p>Taken together, we demonstrate that JH acts as an immune-activator while 20E inhibits innate immunity in the fat body during <it>Bombyx </it>postembryonic development.</p
Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases
BACKGROUND: Primary small cell carcinoma (SCC) of the esophagus is a rare and aggressive tumor with poor prognosis. In this study, we report the clinicopathological characteristics of 21 cases of small cell carcinoma of the esophagus treated at the Cancer Center of Sun Yat-Sen University, with particular focus on the histologic and immunohistochemical findings. METHODS: Twenty-one patient records were reviewed including presenting symptoms, demographics, disease stage, treatment, and follow-up. Histologic features were observed and immunohistochemical detection of cytokeratin (CK), epithelial membrane antigen (EMA), neuron specific enolase (NSE), synaptophysin (Syn), chromogranin A (CgA), neuronal cell adhesion molecules (CD56), thyroid transcriptional factor-1 (TTF-1) and S100 protein (S100) was performed. RESULTS: The median age of patients in the study was 56 years, with a male-to-female ratio of 3.2:1. Histologically, there were 19 "homogenous" SCC esophageal samples and 2 samples comprised of SCC and well-differentiated squamous cell carcinoma. The percentages of SCC samples with positive immunoreactivity were Syn 95.2%, CD56 76.2%, TTF-1 71.4%, NSE 61.9%, CgA 61.9%, CK 57.1%, EMA 61.9%, and S100 19.0%, respectively. The median patient survival time was 18.3 months after diagnosis. The 2-year survival rate was 28.6%. CONCLUSION: Our study suggests that esophageal SCC has similar histology to SCC that arises in the lung compartment, and Chinese patients have a poor prognosis. Higher proportion of positive labeling of Syn, CD56, CgA, NSE, and TTF-1 in esophageal SCC implicate that they are valuably applied in differential diagnosis of the malignancy
- …