26,851 research outputs found

    A new model for the double well potential

    Full text link
    A new model for the double well potential is presented in the paper. In the new potential, the exchanging rate could be easily calculated by the perturbation method in supersymmetric quantum mechanics. It gives good results whether the barrier is high or sallow. The new model have many merits and may be used in the double well problem.Comment: 3pages, 3figure

    Investigation of Partial Discharge in Solid Dielectric under DC Voltage

    No full text
    A partial discharge, or PD, is defined as an electrical discharge that is localized within only a part of the insulation between two separated conductors. Recent research on PD mainly focuses on the study of PD characteristics under AC voltage. Compared with DC, PD under AC is more serious and can be easily detected in terms of PD number. As the results of these concentrated research, the understanding of PD under AC condition has been significantly improved and features extracted from PD measurements have been used to diagnose the insulation condition of many power apparatus. Recently, rapid development in HVDC transmission and power grids connection, and widely applied DC cable and gas-insulated switchgear because of their benefit in long distance usage lead to an increasing concern about PD under DC. However, available study for the condition is little and related research is therefore necessary and essential for understanding the lifetime and reliability of apparatus. <br/

    Feedback local optimality principle applied to rocket vertical landing VTVL

    Get PDF
    Vertical landing is becoming popular in the last fifteen years, a technology known under the acronym VTVL, Vertical Takeoff and Vertical Landing [1,2]. The interest in such landing technology is dictated by possible cost reductions [3,4], that impose spaceship’s recycling. The rockets are not generally de- signed to perform landing operations, rather their design is aimed at takeoff operations, guaranteeing a very high forward acceleration to gain the velocity needed to escape the gravitational force. In this paper a new control method based on Feedback Local Optimality Principle, named FLOP is applied to the rocket landing problem. The FLOP belongs to a special class of optimal controllers, developed by the mechatronic and vehicle dynamics lab of Sapienza, named Variational Feedback Controllers - VFC, that are part of an ongoing research and are recently applied in different field: nonlinear system [5], marine and terrestrial autonomous vehicles [6,7,8], multi agents interactions and vibration control [9, 10]. The paper is devoted to show the robustness of the nonlinear controlled system, comparing the performances with the LQR, one of the most acknowledged methods in optimal control

    Circuit QED and sudden phase switching in a superconducting qubit array

    Full text link
    Superconducting qubits connected in an array can form quantum many-body systems such as the quantum Ising model. By coupling the qubits to a superconducting resonator, the combined system forms a circuit QED system. Here, we study the nonlinear behavior in the many-body state of the qubit array using a semiclassical approach. We show that sudden switchings as well as a bistable regime between the ferromagnetic phase and the paramagnetic phase can be observed in the qubit array. A superconducting circuit to implement this system is presented with realistic parameters .Comment: 4 pages, 3 figures, submitted for publication

    Superconducting correlations in ultra-small metallic grains

    Full text link
    To describe the crossover from the bulk BCS superconductivity to a fluctuation-dominated regime in ultrasmall metallic grains, new order parameters and correlation functions, such as ``parity gap'' and ``pair-mixing correlation function'', have been recently introduced. In this paper, we discuss the small-grain behaviour of the Penrose-Onsager-Yang off-diagonal long-range order (ODLRO) parameter in a pseudo-spin representation. Relations between the ODLRO parameter and those mentioned above are established through analytical and numerical calculations.Comment: 7 pages, 1 figur

    Integer quantum Hall effect and topological phase transitions in silicene

    Full text link
    We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0,±2,±6,,\nu=0,\pm2,\pm6,\ldots, and a conventional QHE near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center, in which higher plateaus disappear first. However, the center ν=0\nu=0 Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase transitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by additional quantum Hall conductivity plateaus.Comment: 7 pages, 4 figure

    Ehrenfest time in the weak dynamical localization

    Full text link
    The quantum kicked rotor (QKR) is known to exhibit dynamical localization in the space of its angular momentum. The present paper is devoted to the systematic first--principal (without a regularizer) diagrammatic calculations of the weak--localization corrections for QKR. Our particular emphasis is on the Ehrenfest time regime -- the phenomena characteristic for the classical--to--quantum crossover of classically chaotic systems.Comment: 27 pages, 9 figure
    corecore