58 research outputs found

    Flame-like Ellerman Bombs and Their Connection to Solar UV Bursts

    Full text link
    Ellerman bombs (EBs) are small-scale intense brightenings in Hα\alpha wing images, which are generally believed to be signatures of magnetic reconnection events around the temperature minimum region of the solar atmosphere. They have a flame-like morphology when observed near the solar limb. Recent observations from the Interface Region Imaging Spectrograph (IRIS) reveal another type of small-scale reconnection events, termed UV bursts, in the lower atmosphere. Though previous observations have shown a clear coincidence of some UV bursts and EBs, the exact relationship between these two phenomena is still under debate. We investigate the spatial and temporal relationship between flame-like EBs and UV bursts using joint near-limb observations between the 1.6--meter Goode Solar Telescope (GST) and IRIS. In total 161 EBs have been identified from the GST observations, and 20 of them reveal signatures of UV bursts in the IRIS images. Interestingly, we find that these UV bursts have a tendency to appear at the upper parts of their associated flame-like EBs. The intensity variations of most EB-related UV bursts and their corresponding EBs match well. Our results suggest that these UV bursts and EBs are likely formed at different heights during a common reconnection process.Comment: 5 figures; accepted by ApJ

    Human activity recognition with commercial WiFi signals

    Get PDF

    Dark structures in sunspot light bridges

    Full text link
    We present unprecedented high-resolution TiO images and Fe I 1565 nm spectropolarimetric data of two light bridges taken by the 1.6-m Goode Solar Telescope at Big Bear Solar Observatory. In the first light bridge (LB1), we find striking knot-like dark structures within the central dark lane. Many dark knots show migration away from the penumbra along the light bridge. The sizes, intensity depressions and apparent speeds of their proper motion along the light bridges of 33 dark knots identified from the TiO images are mainly in the ranges of 80∼\sim200~km, 30\%∼\sim50\%, and 0.3∼\sim1.2~km~s−1^{-1}, respectively. In the second light bridge (LB2), a faint central dark lane and striking transverse intergranular lanes were observed. These intergranular lanes have sizes and intensity depressions comparable to those of the dark knots in LB1, and also migrate away from the penumbra at similar speeds. Our observations reveal that LB2 is made up of a chain of evolving convection cells, as indicated by patches of blue shift surrounded by narrow lanes of red shift. The central dark lane generally corresponds to blueshifts, supporting the previous suggestion of central dark lanes being the top parts of convection upflows. In contrast, the intergranular lanes are associated with redshifts and located at two sides of each convection cell. The magnetic fields are stronger in intergranular lanes than in the central dark lane. These results suggest that these intergranular lanes are manifestations of convergent convective downflows in the light bridge. We also provide evidence that the dark knots observed in LB1 may have a similar origin.Comment: 6 figure

    Microwave-Assisted Oxidation of Electrospun Turbostratic Carbon Nanofibers for Tailoring Energy Storage Capabilities

    Get PDF
    We report the systematic structural manipulation of turbostratic electrospun carbon nanofibers (ECNFs) using a microwave-assisted oxidation process, which is extremely rapid and highly controllable and affords controlled variation of the capacitive energy storage capabilities of ECNFs. We find a nonmonotonic relationship between the oxidation degree of ECNFs and their electrocapacitive performance and present a detailed study on the electronic and crystalline structures of ECNFs to elucidate the origin of this nonmonotonic relation. The ECNFs with an optimized oxidation level show ultrahigh capacitances at high operation rates, exceptional cycling performance, and an excellent energy–power combination. We have identified three key factors required for optimal energy storage performance for turbostratic carbon systems: (i) an abundance of surface oxides, (ii) microstructural integrity, and (iii) an appropriate interlayer spacing

    Message-passing selection: Towards interpretable GNNs for graph classification

    Full text link
    In this paper, we strive to develop an interpretable GNNs' inference paradigm, termed MSInterpreter, which can serve as a plug-and-play scheme readily applicable to various GNNs' baselines. Unlike the most existing explanation methods, MSInterpreter provides a Message-passing Selection scheme(MSScheme) to select the critical paths for GNNs' message aggregations, which aims at reaching the self-explaination instead of post-hoc explanations. In detail, the elaborate MSScheme is designed to calculate weight factors of message aggregation paths by considering the vanilla structure and node embedding components, where the structure base aims at weight factors among node-induced substructures; on the other hand, the node embedding base focuses on weight factors via node embeddings obtained by one-layer GNN.Finally, we demonstrate the effectiveness of our approach on graph classification benchmarks.Comment: 6 pages, 1 figure

    Frequently Occurring Reconnection Jets from Sunspot Light Bridges

    Full text link
    Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world's largest solar telescope, the 1.6-meter Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα{\alpha} line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200~km~s−1^{-1}, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼\sim80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα{\alpha} core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.Comment: ApJ, 8 figure

    The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts

    Full text link
    • …
    corecore