8 research outputs found

    Capital market opening and labour investment efficiency

    Get PDF
    The purpose of this research is to explore the impact of capital market opening on inefficient labour investment of enterprises and its impact path. This paper takes 2010–2019 A-share nonfinancial listed companies in Shanghai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE) as research objects and samples, and uses DID method to examine the impact of capital market opening on labour investment efficiency of listed companies.We collected 22567 pieces of data.The results show that the capital market opening system significantly reduces inefficient labour investment of enterprises, mainly through reducing the information asymmetry and the agency costs as the main paths. This research shows that the capital market opening is of positive significance to the sustainable development of enterprises, and it proposes targeted suggestions for the government, listed companies and market investors to effectively reduce the inefficient labour investment of enterprises. The research provides more feasible references for capital market opening and corporate governance, and also offers theoretical evidence for the implementation of ‘Shanghai-Hong Kong Stock Connect’ program

    The Ets Transcription Factor GABP Is a Component of the Hippo Pathway Essential for Growth and Antioxidant Defense

    Get PDF
    这是周大旺教授继2009年首次发现了Hippo信号通路在哺乳动物中控制器官大小及肿瘤发生具有重要作用后的又一重大研究成果,该研究系统阐述了 YAP基因在转录调控水平上的的调控机理,进一步完善了人们对Hippo信号通路的认识,也为由YAP调控异常所引发的癌症提供了一个潜在的治疗靶点。 该论文的第一作者为博士生吴黉坦和硕士生肖玉波和张世浩, 通讯作者是周大旺教授和陈兰芬副教授,该工作是与厦门市中医院、中山医院和医学高等专科学校等单位合作完成的。周大旺教授是中央首批“青年千人计划”入选者并获得国家首批“优秀青年科学基金”资助。The transcriptional coactivator Yes-associated protein (YAP) plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP

    A comprehensive update on CIDO: the community-based coronavirus infectious disease ontology

    Get PDF
    The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology in early 2020. As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications

    Simple Synthesis of 3D Ground-Moss-Shaped MnO@N-C Composite as Superior Anode Material for Lithium-Ion Batteries

    No full text
    A MnO@N-doped carbon (MnO@N-C) composite, with a three-dimensional (3D) ground-moss-like structure, was synthesized through hydrothermal treatment, polydopamine coating, and calcination, all without the use of surfactants. In lithium-ion batteries, the MnO@N-C sample, when used as an anode, achieved a performance of 563 mAh g−1 at 1.0 A g−1 across 300 cycles and boasted an initial Coulombic efficiency of 73.2%. In contrast, the MnO electrode had a discharge capacity of 258 mAh g−1 and an efficiency of 53.3% under the same conditions. The improved performance stems from the 3D carbon networks hosting MnO. These networks enhance MnO’s electron transfer ability and offer space to offset volume changes during the charge–discharge cycle

    Topically applied fullerenols protect against radiation dermatitis by scavenging reactive oxygen species

    No full text
    Abstract Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD

    Terbinafine prevents colorectal cancer growth by inducing dNTP starvation and reducing immune suppression

    No full text
    Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio=0.50) and metastasis (hazard ratio=0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation and cell cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response
    corecore