42 research outputs found

    Uncovering the immune microenvironment and molecular subtypes of hepatitis B-related liver cirrhosis and developing stable a diagnostic differential model by machine learning and artificial neural networks

    Get PDF
    Background: Hepatitis B-related liver cirrhosis (HBV-LC) is a common clinical disease that evolves from chronic hepatitis B (CHB). The development of cirrhosis can be suppressed by pharmacological treatment. When CHB progresses to HBV-LC, the patient’s quality of life decreases dramatically and drug therapy is ineffective. Liver transplantation is the most effective treatment, but the lack of donor required for transplantation, the high cost of the procedure and post-transplant rejection make this method unsuitable for most patients.Methods: The aim of this study was to find potential diagnostic biomarkers associated with HBV-LC by bioinformatics analysis and to classify HBV-LC into specific subtypes by consensus clustering. This will provide a new perspective for early diagnosis, clinical treatment and prevention of HCC in HBV-LC patients. Two study-relevant datasets, GSE114783 and GSE84044, were retrieved from the GEO database. We screened HBV-LC for feature genes using differential analysis, weighted gene co-expression network analysis (WGCNA), and three machine learning algorithms including least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) for a total of five methods. After that, we constructed an artificial neural network (ANN) model. A cohort consisting of GSE123932, GSE121248 and GSE119322 was used for external validation. To better predict the risk of HBV-LC development, we also built a nomogram model. And multiple enrichment analyses of genes and samples were performed to understand the biological processes in which they were significantly enriched. And the different subtypes of HBV-LC were analyzed using the Immune infiltration approach.Results: Using the data downloaded from GEO, we developed an ANN model and nomogram based on six feature genes. And consensus clustering of HBV-LC classified them into two subtypes, C1 and C2, and it was hypothesized that patients with subtype C2 might have milder clinical symptoms by immune infiltration analysis.Conclusion: The ANN model and column line graphs constructed with six feature genes showed excellent predictive power, providing a new perspective for early diagnosis and possible treatment of HBV-LC. The delineation of HBV-LC subtypes will facilitate the development of future clinical treatment of HBV-LC

    Biofortification Technology for the Remediation of Cadmium-Contaminated Farmland by the Hyperaccumulator <i>Sedum alfredii</i> under Crop Rotation and Relay Cropping Mode

    No full text
    Soil cadmium (Cd) extraction for hyperaccumulators is one of the most important technologies for the remediation of Cd-contaminated farmland soil. However, a phytoremediation model using a single hyperaccumulator cannot guarantee normal agricultural production in contaminated areas. To solve this problem, a combination of efficient remediation and safe production has been developed. Based on two-period field experiments, this study explored the effect of biofortification on soil Cd remediation using the fruit tree Sedum alfredii Hance and oil sunflower crop rotation and relay cropping mode. BioA and BioB treatments could markedly improve the efficiency of Cd extraction and remediation, and the maximum increase in Cd accumulation was 243.29%. When BioB treatment was combined with papaya–S. alfredii and oil sunflower crop rotation and relay cropping mode, the highest soil Cd removal rate in the two periods was 40.84%, whereas the Cd concentration of papaya fruit was lower than safety production standards (0.05 mg/kg). These results demonstrate that biofortification measures can significantly improve the Cd extraction effect of S. alfredii crop rotation and relay cropping restoration modes, which has guiding significance for Cd pollution remediation and safe production in farmland

    Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco.

    No full text
    Metallothioneins are cysteine-rich metal-binding proteins. In the present study, SaMT2, a type 2 metallothionein gene, was isolated from Cd/Zn co-hyperaccumulator Sedum alfredii Hance. SaMT2 encodes a putative peptide of 79 amino acid residues including two cysteine-rich domains. The transcript level of SaMT2 was higher in shoots than in roots of S. alfredii, and was significantly induced by Cd and Zn treatments. Yeast expression assay showed SaMT2 significantly enhanced Cd tolerance and accumulation in yeast. Ectopic expression of SaMT2 in tobacco enhanced Cd and Zn tolerance and accumulation in both shoots and roots of the transgenic plants. The transgenic plants had higher antioxidant enzyme activities and accumulated less H2O2 than wild-type plants under Cd and Zn treatment. Thus, SaMT2 could significantly enhance Cd and Zn tolerance and accumulation in transgenic tobacco plants by chelating metals and improving antioxidant system

    Analysis of metal element distributions in rice (Oryza sativa L.) seeds and relocation during germination based on X-ray fluorescence imaging of Zn, Fe, K, Ca, and Mn.

    Get PDF
    Knowledge of mineral localization within rice grains is important for understanding the role of different elements in seed development, as well as for facilitating biofortification of seed micronutrients in order to enhance seeds' values in human diets. In this study, the concentrations of minerals in whole rice grains, hulls, brown rice, bran and polished rice were quantified by inductively coupled plasma mass spectroscopy. The in vivo mineral distribution patterns in rice grains and shifts in those distribution patterns during progressive stages of germination were analyzed by synchrotron X-ray microfluorescence. The results showed that half of the total Zn, two thirds of the total Fe, and most of the total K, Ca and Mn were removed by the milling process if the hull and bran were thoroughly polished. Concentrations of all elements were high in the embryo regions even though the local distributions within the embryo varied between elements. Mobilization of the minerals from specific seed locations during germination was also element-specific. High mobilization of K and Ca from grains to growing roots and leaf primordia was observed; the flux of Zn to these expanding tissues was somewhat less than that of K and Ca; the mobilization of Mn or Fe was relatively low, at least during the first few days of germination
    corecore