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Background: Hepatitis B-related liver cirrhosis (HBV-LC) is a common clinical
disease that evolves from chronic hepatitis B (CHB). The development of cirrhosis
can be suppressed by pharmacological treatment. When CHB progresses to HBV-
LC, the patient’s quality of life decreases dramatically and drug therapy is
ineffective. Liver transplantation is the most effective treatment, but the lack of
donor required for transplantation, the high cost of the procedure and post-
transplant rejection make this method unsuitable for most patients.

Methods: The aim of this study was to find potential diagnostic biomarkers
associated with HBV-LC by bioinformatics analysis and to classify HBV-LC into
specific subtypes by consensus clustering. This will provide a new perspective for
early diagnosis, clinical treatment and prevention of HCC in HBV-LC patients. Two
study-relevant datasets, GSE114783 and GSE84044, were retrieved from the GEO
database. We screened HBV-LC for feature genes using differential analysis,
weighted gene co-expression network analysis (WGCNA), and three machine
learning algorithms including least absolute shrinkage and selection operator
(LASSO), support vector machine recursive feature elimination (SVM-RFE), and
random forest (RF) for a total of five methods. After that, we constructed an
artificial neural network (ANN) model. A cohort consisting of GSE123932,
GSE121248 and GSE119322 was used for external validation. To better predict
the risk of HBV-LC development, we also built a nomogram model. And multiple
enrichment analyses of genes and samples were performed to understand the
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biological processes in which they were significantly enriched. And the different
subtypes of HBV-LC were analyzed using the Immune infiltration approach.

Results: Using the data downloaded from GEO, we developed an ANN model and
nomogram based on six feature genes. And consensus clustering of HBV-LC
classified them into two subtypes, C1 and C2, and it was hypothesized that
patients with subtype C2 might have milder clinical symptoms by immune
infiltration analysis.

Conclusion: The ANN model and column line graphs constructed with six feature
genes showed excellent predictive power, providing a new perspective for early
diagnosis and possible treatment of HBV-LC. The delineation of HBV-LC subtypes
will facilitate the development of future clinical treatment of HBV-LC.

KEYWORDS

HBV-LC, CHB, diagnostic biomarkers, machine learning algorithms, artificial neural
network, consensus clustering, immune infiltration, big data

1 Introduction

Approximately 257 million people worldwide have CHB, and
HBV-LC causes more than 700,000 deaths worldwide each year
(Chen et al., 2021). 15%–20% of patients with CHB will progress to
cirrhosis within 5 years (Kobashi et al., 2011). The incidence of HCC
is significantly higher in patients with cirrhosis (Su et al., 2022a; Su
et al., 2022b; Chen et al., 2022; Li et al., 2023a; Li et al., 2023b).
Among CHB patients, the annual incidence of HCC was
significantly higher in patients with cirrhosis than in non-
cirrhotic patients (3.5% vs. 0.4%, p < 0.0001) (Do et al., 2014).
However, early cirrhotic livers are in the compensated phase without
any specific clinical manifestations and symptoms (Jeong et al.,
2012). Patients with decompensated cirrhosis have a poor prognosis,
and the 5-year survival rate for patients with untreated HBV-related
decompensated cirrhosis (HBV-DeCi) is less than 15% (de Jongh
et al., 1992). And only 14%–35% 5-year survival with conventional
standard therapy (Wang et al., 2012; Harrison, 2015). Although
most patients with HBV-DeCi can be treated with liver
transplantation, the shortage of donor livers, high surgical costs
and rejection make this method currently unavailable for most
patients (Chan et al., 2009; Chung et al., 2014; Su et al., 2023),
resulting in effective treatment is not available to many patients.
Therefore, it is particularly important to improve the prognosis of
HBV-LC patients by early prevention and diagnosis of the
development of cirrhosis in CHB patients. Liver biopsy is
currently the “gold standard” for the diagnosis of cirrhosis, but it
has disadvantages such as invasiveness, complications and poor
patient compliance (Spinzi et al., 2001). Various imaging tests are
non-invasive and convenient (Lurie et al., 2015), but have low
sensitivity and specificity for the diagnosis of early cirrhosis.
Serologic tests have diagnostic value for many different types of
cirrhosis (Stasi and Milani, 2017), but HBV-LC patients may show
different pathologic features. Therefore, the search for new
diagnostic biomarkers is crucial to improve the early diagnosis of
HBV-LC patients.

With the development of bioinformatics and high-throughput
sequencing technologies, mechanisms and diagnostically relevant
biomarkers for a variety of liver diseases have been identified (Jin
et al., 2022; Chi et al., 2023a). Although there are many studies

focusing on liver diseases, studies on HBV-LC are rare. Therefore,
this study aimed to identify new diagnostic biomarkers to improve
the diagnosis of HBV-LC patients and elucidate the underlying
molecular mechanisms of its formation. Subtyping of HBV-LC and
exploring the differences between different subtypes by
immunological analysis will provide new perspectives for the
future treatment of HBV-LC and prevention of hepatocellular
carcinoma.

In this study, we obtained the gene expression matrix file of
CHB and HBV-LC through the GEO database. We screened six
feature genes associated with HBV-LC formation by differential
analysis of genes, WGCNA and three machine learning algorithms.
Differential analysis of the feature genes was performed to explore
their differential expression in CHB versus HBV-LC. Single gene
GSEA analysis was performed to explore the molecular mechanism
of each signature gene associated with HBV-LC formation.
Functional analysis of single-sample gene set enrichment
analysis (ssGSEA) hallmark gene set was performed to explore
the expression differences between CHB and HBV-LC in different
functions, and the correlation between the feature genes and
different functions. To further study HBV-LC, we typed HBV-
LC according to the feature genes in terms of molecular
mechanisms and performed immune infiltration analysis for
different subtypes. To provide new ideas for the diagnosis and
treatment of HBV-LC. The goal of our study is to diagnose and
analyze the formation of HBV-LC more comprehensively through
genetic data.

2 Materials and methods

2.1 Acquisition and processing of gene
expression data

The expression matrix files of all datasets GSE114783 (10CHB,
10HBV-LC), GSE84044 (43CHB, 10HBV-LC), GSE123932 (6HBV-
LC), GSE121248 (6CHB) and GSE119322 (37CHB) used in this
study were obtained from the NCBI Gene Expression Omnibus
database (GEO, https://www.ncbi.nlm.nih.gov/geo/). We combined
the samples studied in the two datasets GSE114783 and GSE84044,
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and then removed the combined batch effects as the training set. The
amalgamation of samples from the three datasets, namely,
GSE123932, GSE121248, and GSE119322, culminated in the
formation of a unified cohort. Subsequent to this amalgamation,
diligent measures were employed to mitigate any batch effects
inherent in the combined dataset. This meticulously curated
amalgamated dataset was then earmarked for deployment as the
validation set in the study.

2.2 Screening and enrichment analysis of
differential genes

Differential gene expression analysis was performed on the
training set using the R package “Limma” to identify differential
genes (DEGs) (|log2FC|>1, FDR<0.05) (Zhao et al., 2022a; Zhao
et al., 2022b; Li et al., 2022). We also used the R package “pheatmap”
and “ggplot2″ to create heat maps and volcano maps to visualize the
DEGs (Song et al., 2022a; Song et al., 2022b). To investigate the
enrichment levels of DEGs in different functional pathways, we
performed gene set enrichment analysis (GSEA) on DEGs using the
R package “clusterProfiler” (Zhong et al., 2022; Huang et al., 2023a;
Zhao et al., 2023), and selected the five highest and lowest enriched
functional pathways for visualization.

2.3 Construction of gene co-expression
networks

The WGCNA method is useful for gene expression studies. The
R package “WGCNA” is used to develop and modularize gene co-
expression networks (Song et al., 2023; Zhang et al., 2023; Song et al.,
2023). The samples are clustered to detect any significant outliers or
outliers. Thereafter, automated networks are used to build co-
expression networks. Detection of modules is performed using
hierarchical clustering and dynamic tree cut. Module
membership (MM) and gene significance (GS) evaluations are
used to associate modules with disease characteristics. Core co-
expression modules were those with the highest module
membership (MM) and p < 0.05. MM > 0.8 indicated high
module relevance and GS > 0.2 indicated high clinical
importance. Modules with the highest correlation with patient
groups were selected to provide disease-associated co-expressed
genes for further studies.

2.4 Identify candidate genes and perform
functional enrichment analysis

The intersection of DEGs with WGCNA disease correlations
was taken as a candidate gene using a Venn diagram. To evaluate
the candidate genes for disease-related diseases, Disease
Ontology (DO) analysis was performed using the R package
“DOSE”. To further determine the potential biological
functions and signaling pathways of the candidate genes,
functional enrichment analysis was applied to evaluate the
candidate genes. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were

performed using the R package “clusterProfiler” (Zhang et al.,
2022; Shen et al., 2022; Huang et al., 2023; Zhang et al., 2023).

2.5 Machine learning screens for diagnostic
biomarkers

Three machine learning algorithms, SVM-RFE, RF and LASSO
logistic regression (Chi et al., 2023b; Ren et al., 2023), were chosen to
jointly screen diagnostic biomarkers. The SVM-RFE algorithm was
performed using the R package “caret” and “e1071” to train different
types of feature subsets and calculate the points with the lowest
cross-validation error (Jin et al., 2021a). The number of genes with
the minimum error is the number of diagnostic biomarkers screened
by SVM-RFE (Chi et al., 2023c). The RF algorithm was performed
using the R package “randomForest” to rank the relative importance
of the candidate genes, and those with relative
importance >1.25 were selected as the diagnostic biomarkers
screened by the RF algorithm. After that, we used the R package
“glmnet” to perform LASSO logistic regression and adjusted the
optimal penalty parameter λ for 10-fold cross-validation to obtain
the diagnostic biomarkers screened by LASSO logistic regression
(Zhang et al., 2023). Finally, we obtained six disease-related feature
genes by taking the intersection of the three machine learning
screened feature genes.

2.6 Construction and validation of
diagnostic models

We used the R packages “neuralnet” and “dplyr” to construct an
ANN model with a nomogram model (Jin et al., 2022). The
expression data of the screened feature genes were extracted. The
median expression value of each characteristic gene in all samples
was used as the criterion to score each feature gene in each sample
with Gene Score. The Gene Score for each gene in the training set
was obtained by using the following rules: 1 for upregulated genes
above the median and 0 for downregulated genes above the median,
and 0 for downregulated genes above the median and 1 for
downregulated genes below the median. The neural network
model was constructed using the R package “neuralnet”, which
consists of an input layer, a hidden layer and an output layer, and the
output layer was obtained by multiplying the gene score and the
gene weight (formula: Neural HBV-LC = Σ(Gene Score*Gene
Weight)). The performance of the model was assessed by plotting
the subject worker curve (ROC) using the R package “PROC” and
was specified by the area under the ROC curve (AUC) (Jin et al.,
2021b). To demonstrate the generalizability of the model, the
validation set gene expression matrix was transformed into its
corresponding Gene Score using the same method, and the AUC
of the validation set was obtained to assess whether the
generalizability of the model was good. In addition, a nomogram
was constructed using the R package “Rms” to predict the
conversion of CHB patients to HBV-LC (Dong et al., 2023). The
expression of each characteristic gene was obtained as a score for the
relevant gene, and the total score was obtained by summing all the
scores to predict the risk of disease based on the total score. The
predictive power of the nomogram model was assessed by
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calibration curves. The clinical utility value of the model is evaluated
by decision curve analysis (DCA).

2.7 Functional analysis of ssGSEA hallmark
gene set

The GSEA website (https://www.gsea-msigdb.org/gsea/index.jsp)
provides the required hallmark gene set data for this study. The
functional scores of the corresponding gene sets were obtained for
each sample using the R packages “GSVA” and “GSEABase” (Huang
et al., 2023c). The differences in expression of biological functions
between the disease and control groups were then compared. To
analyze the correlation between feature genes and biological functions,
a functional correlation test was performed for each feature gene.

2.8 Consensus clustering of diseases

The disease under study can be classified into different subtypes
by consensus clustering. The expression matrices of HBV-LC patients
in the training and validation sets were combined and the
characteristic gene expressions of all disease samples were
extracted as the original expression matrix for consensus
clustering. HBV-LC patients were classified into different subtypes
using the R package “ConsensusClusterPlus”. The results were
repeatedly run 1,000 times to verify the accuracy and
reproducibility of the consensus clustering. The optimal number of
clusters was determined by the relative changes in the consensus
matrix plot and the consensus cumulative distribution function (CDF)
plot, as well as the trajectory plot. To verify the clustering effect, PCA
plots were drawn using the R package “ggplot2” to observe whether
the samples of different subtypes were separated on the scatter plot.
The heat map and box line plot between genes and different subtypes
were also used to observe the expression and expression differences
between different subtypes for each feature gene.

2.9 Gene set variance analysis (GSVA)

GSVA analysis was performed on different subtypes of HBV-LC
by using the gene set selected from MSigDB as the reference set and
the screened feature genes as the sample gene set. The GSVA score of
each gene set was obtained using the R package “GSVA” (Zhang
et al., 2022). The scores indicate the absolute enrichment of the gene
sets to investigate whether they are enriched in different functional
pathways among different subtypes.

2.10 Immune infiltration analysis

CIBERSORT is widely used for the estimation of immune cell
composition based on the expression matrix of genes. With the
CIBERSORT algorithm we quantified the proportion of 22 immune
cell infiltrations between patients with different subtypes of HBV-LC
and normal subjects (Cui et al., 2022), showing the proportion of
immune cells in different subtypes of samples in the form of bar charts.
The correlation between the 22 immune cell types was analyzed using

the R package “corrplot” and presented as a heat map. The expression
differences of 22 immune cells and 10 immune functions were
compared between different subtypes by box plot (Wang et al., 2023).

2.11 Statistical analysis

All analyses were performed statistically using R software
version 4.2.2. The Wilcoxon rank sum test was used to compare
the proportion of immune function and immune cell infiltration for
different subtypes of HBV-LC. Correlation coefficients were tested
using spearman correlation analysis. A p-value < 0.05 or false
discovery rate (FDR) < 0.05 was considered statistically
significant in all statistical findings of this study.

3 Results

3.1 Identification of DEGs

Figure 1 shows the flow chart of this study. To identify DEGs
between the CHB andHBV-LC groups, the expressionmatrices of CHB
and HBV-LC samples in the two datasets GSE114783 and
GSE84044 were merged in this study, and the merged data were
batch corrected to remove the batch effect from the merger (Figures
2A, B). A total of 36 genes (|log2FC|>1, FDR<0.05) were significantly
differentially expressed in the combined data. Among them, 4 genes
were downregulated and 32 genes were upregulated (Figures 2C, D). In
addition, to understand the enrichment level of DEGs in different
functional pathways, we performed GSEA analysis on the combined
datasets, and the top 5 most significantly enriched pathways were
shown (Figures 2E, F). The results showed that the pathway with
significant enrichment of DEGs was Central carbon metabolism in
cancer, indicating that DEGsmay affect the conversion of CHB patients
to HBV-LC or even HCC. And these DEGs were downregulated in the
expression of several pathways of Bile secretion, Drug metabolism-
cytochrome P450, Metabolism of xenobiotics by cytochrome P450,
Retinol metabolism, all associated with the metabolic function of
hepatocytes. The above results suggest that these genes may be
associated with functional impairment of hepatocytes.

3.2 WGCNA establishes gene co-expression
network

To screen for co-expressed genes associated with HBV-LC,
weighted gene co-expression network analysis (WGCNA) was
performed on the merged dataset. A threshold was set to cluster
all samples to observe whether there were outliers or abnormal values
(Figure 3A), and obviously abnormal samples were removed. The co-
expression network was constructed, and the average connectivity of
the network was good when the scale-free topological fit index R̂2 >
0.9, so we set a soft threshold β = 9 (Figure 3B). The clustering height
was set to 0.25, and the modules with strong correlation were merged
(Figure 3C), and in this way 13 modules were identified for the
subsequent study. The sample clustering tree was displayed with its
original and merged modules (Figure 3D), and the results of the
merged and pre-merged modules with strong associations could be
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observed. The relationship between modules and clinical symptoms
was investigated by correlation between ME values and disease
characteristic. To study the co-expressed genes associated with
HBV-LC, the 13 co-expressed modules in the heat map were
observed. There was a negative correlation between the blue
module and the control group (r = −0.71, p = 3e-12) and a
positive correlation with the patient group (r = 0.71, p = 3e-12)
(Figure 3E), so the most significant correlation between the blue
module and HBV-LC was found for 325 genes. After identifying
clinically significant modules, a review of the patient group MM
versus GS scatter plot showed that the blue module was highly
correlated with HBV-LC (Figure 3F). All genes of this module will
be used for further studies.

3.3 Identification of candidate genes and
functional enrichment analysis

Through meticulous execution of a Venn diagram analysis, we
successfully identified and delineated a cohort of 30 candidate genes
that exhibited a pronounced and statistically significant correlation
between DEGs and the context of HBV-LC (Figure 4A). Subsequently,
a comprehensive Disease Ontology (DO) enrichment analysis was
meticulously undertaken to unravel the intricate implication of these
candidate genes within the disease landscape (Figure 4B). The

discerning outcomes of this analysis not only underscored but also
substantiated the substantial enrichment of these candidate genes
within the domain of hepatocellular afflictions, specifically hepatitis
and hepatitis B. To illuminate the biological processes and pathways
intricately linked to these select genes, a meticulous exploration
involving Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses was meticulously
undertaken. In the realm of GO enrichment analysis, it was
intriguingly revealed that the candidate genes actively partake in a
spectrum of pivotal biological processes (BP), encompassing
fundamental aspects such as cell-matrix adhesion and the
constraining of viral processes. Furthermore, at the level of
molecular function (MF), these candidate genes intricately engage in
functionalities intrinsic to the collagen-containing extracellular matrix,
as well as the pivotal phenomenon of focal adhesion, among other
pivotal roles. Delving into the intricacies of cellular components (CC), it
is noteworthy that these genes find their habitat within crucial domains
such as calcium-dependent protein binding and integrin binding,
contributing substantively to cellular architecture and function
(Figure 4C). To widen the scope, the KEGG enrichment analysis
astutely divulged the predominant involvement of the candidate
genes in pathways of paramount significance, particularly those
associated with tissue injury and cellular demise. Among these
pathways are the intricate complement and coagulation cascades,
along with the consequential Necroptosis pathway (Figure 4D).

FIGURE 1
Flow chart of the design of this study.
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3.4 Machine learning screens for diagnostic
biomarkers

To select reliable diagnostic biomarkers from candidate genes,
we used three machine learning algorithms, including SVM-RFE,
RF, and LASSO logistic regression. The SVM-RFE algorithm was
calculated to select the top 20 genes with the highest accuracy
(Figure 5A) and the lowest error rate (Figure 5B). The RF
algorithm combined the error rate with the number of
classification trees (Figure 5C). The relative importance of
candidate genes was ranked, and the 10 candidate genes with
relative importance >1.25 were selected as diagnostic biomarkers

for RF algorithm screening (Figure 5D). 11 genes were screened
from the statistically significant univariate variables by LASSO
regression analysis (Figure 5E). The intersection of the three
machine learning algorithms was obtained by Wayne diagram,
and six diagnostic biomarkers were screened as PPP4R1, BBOX1,
LOXL1, MACROH2A1, ITGBL1, and FBLN5 (Figure 5F). The
screened diagnostic biomarkers were used as the feature genes of
HBV-LC. Correlation tests between genes were performed for the
feature genes (Figure 5G), and the results showed that BBOX1 was
negatively correlated with the remaining five genes, indicating a
significant functional difference between BBOX1 and the remaining
five genes. And five genes, LOXL1, MACROH2A1, ITGBL1,

FIGURE 2
Identification of DEGs between CHB and HBV-LC samples with analysis. (A,B) Batch correction of the combined samples to remove the effect from
batch effects. (C) Heat map of differential genes, where C represents the control group consisting of CHB patient samples and P represents the patient
samples of HBV-LC for the disease group. Red represents geneswith high expression in that sample and blue represents genes with low expression in that
sample. The distribution of differential genes between the control and disease groups can be seen by observing the correlation between heat map
genes and samples. (D) Volcano plots of differential genes. With log2FC = 0 and p < 0.05 as the criterion, greater than 0 is upregulated and less than 0 is
downregulated.We selected genes satisfying |log2FC|>1, p < 0.05 as geneswith significant differences and showed their names on the volcano plots. (E,F)
GSEA analysis of differential genes, and the top five functional pathways with up- and downregulated expression were selected for display.
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FBLN5 and PPP4R1, were all positively correlated with each other,
indicating a significant functional similarity between these five
genes.

3.5 Construction of diagnostic models,
validation and construction of column line
graphs

The integration of the expression matrix containing the
meticulously screened six genes with the amalgamated expression
matrix provided a robust foundation for analysis. In order to

ascertain the significance of these pivotal genes, a “gene score”
dichotomizing between 0 and 1 was ascribed based on the median
expression value observed across the entire spectrum of samples.
Subsequent to this, the computation of feature gene weights
facilitated the construction of an innovative Artificial Neural
Network (ANN) model (as expressed in the equation: Neural
HBV-LC = Σ(Gene Score*Gene Weight)). The architecture of the
ANN model comprised a well-defined input layer, a discreet hidden
layer, and a discerning output layer (Figure 6A). The efficacy of the
ANN model was underscored through rigorous training with a
designated dataset, culminating in an impressive area under the
receiver operating characteristic curve (ROC AUC) of 0.947—a

FIGURE 3
Establishment of WGCNA gene co-expression network and module selection. (A) The samples were clustered to construct the sample clustering
dendrogram to observe whether there are outliers (B) The scale-free topological fit index R̂2 was set to 0.9, when the soft threshold β= 9 and the average
connectivity of the network was good. (C) The height is set to 0.25 to cut the clustered dendrograms to detect expression modules that are similar to the
combination. (D) Sample clustering trees with their original and combinedmodules were displayed to observe the clustering effect. (E)Heat map of
correlations between modules and disease features. Red represents positive correlation and blue represents negative correlation. The values among the
brackets are p-values to test whether the modules are statistically significant. The values above the brackets represent the magnitude of correlation
between modules and clinical features. (F) Scatterplot of the correlation between the MEblue module, which has the strongest correlation with HBV-LC,
and the disease-related genes, with an overall trend of positive correlation.
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testament to its prowess in prognosticating HBV-LC (Figure 6B).
Furthermore, the application of the identified feature genes along
with their corresponding gene scores to an independent validation
dataset yielded an AUC value of 0.719, thereby substantiating the
model’s robustness and real-world applicability (Figure 6C).
Elevating the clinical utility of HBV-LC risk assessment, we
meticulously constructed a column line graph model for precise
HBV-LC diagnosis, seamlessly employing the six pivotal genes in
conjunction with the R package “Rms” (Figure 6D). The precision of
the model was reiterated by the alignment of calibration curves,
demonstrating minimal disparities between predicted and actual
HBV-LC risk levels (Figure 6E). Crucially, the discernment offered
by Decision Curve Analysis (DCA) emphasized the superior
diagnostic utility of the “model” curve in comparison to the
“ALL” curve, discernibly enhancing clinical diagnostic precision
within the 0–1 threshold range (Figure 6F).

3.6 Differential expression of feature genes

To explore the difference in expression of the screened feature
genes in the patient group versus the control group, we plotted the

box plots of gene expression differences. Under the condition of
meeting statistical significance, the results showed that the
expression of BBOX1 was lower in the disease group than in the
control group (Figure 7A). While the expression of the remaining
five genes, FBLN5, ITGBL1, LOXL1, MACROH2A1 and PPP4R1,
was higher in the patient group than in the control group
(Figures 7B–F).

3.7 Single-gene GSEA analysis of feature
genes and functional analysis of ssGSEA
hallmark gene set

To elucidate the intricate molecular underpinnings governing
the transition from CHB to hepatitis HBV-LC, we embarked upon a
comprehensive endeavor employing single gene GSEA on the six
pivotal genes that emerged from our screening efforts. This
exploration delved into the gene expression patterns within
diverse biological processes (Figures 8A–F). Notably, within this
gamut, the gene BBOX1 garnered attention for its heightened
expression in the pathway associated with bile secretion,
concurrently exhibiting subdued expression in the context of

FIGURE 4
Identification of candidate genes and analysis of functional enrichment. (A) Venn diagram of disease-associated co-expression module genes
screened by WGCNA with differential genes, intersecting genes as candidate genes. (B) Bubble plots of candidate genes DO analysis. (C) Bubble plot of
candidate genes GO analysis. (D) Bubble plot of candidate genes KEGG analysis.
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disease groups. Evidently, BBOX1’s downregulated expression could
conceivably attenuate bile secretion in damaged hepatocytes.
Intriguingly, FBLN5 and PPP4R1 exhibited pronounced activity
within the Phosphatidylinositol signaling system, hinting at their
potential involvement in orchestrating the conversion from CHB to
HBV-LC through the modulation of phosphatidylinositol-mediated
signaling cascades. Meanwhile, ITGBL1, LOXL1, and
MACROH2A1, encompassing three genes, exhibited heightened
expression within the Proteasome pathway, while
PPP4R1 emerged as a prominent contender within the
p53 signaling pathway. This conveys that these four genes might
intricately govern the transition by regulating cell cycle dynamics.
Pertinently, the elevated expression of ITGBL1, LOXL1, and
PPP4R1 also exhibited correlations with the Ribosome pathway,
suggesting their potential sway over ribosomal functionality.
Extending our investigation, we directed our focus towards
assessing hallmark gene sets’ functional analyses between CHB
and HBV-LC through ssGSEA. Strikingly, upon meticulous
curation, these analyses revealed a consistent trend wherein the
expressions across various functional categories within patient
groups surpassed those in the control cohort. Notwithstanding, a
trio of functional disease groups - KRAS_SIGNALING_DN,
XENOBIOTIC_METABOLISM, and ADIPOGENESIS - exhibited
relatively diminished expression as compared to the control group

(Figure 8G). Building upon this foundation, we delved into an
intricate investigation of the functional correlation existing
between individual genes and the hallmark gene sets. As a result,
it became patently evident, after rigorous filtration of statistically
insignificant functions, that these genes exhibited strikingly
significant positive or negative correlations with their
corresponding functions (Figure 8H). This intriguing interplay
underscores the pivotal role that these feature genes assume in
modulating the manifestation of these highly expressive functions,
which, in turn, influences the nuanced journey of CHB
transformation into HBV-LC. In summation, our comprehensive
analyses paint a vivid portrait of the molecular choreography
orchestrating the conversion, underscoring the intricate network
of interrelated processes that govern this transition.

3.8 Consensus clustering of HBV-LC by
feature genes

The HBV-LC samples in the training and validation sets were
combined to obtain the expression matrix required for typing. The
subtyping of HBV-LC samples was performed by consensus
clustering based on the six feature gene expression profiles
screened. By the consensus matrix plot with CDF curve, we

FIGURE 5
Machine learning screening of diagnostic biomarkers. (A,B) Support vectormachine recursive feature elimination (SVM-RFE) algorithm for screening
biometric genes, with the number of points with the lowest accuracy and error rate as feature genes. (C) Number of random forest (RF) algorithm error
rate and classification trees. (D) Relative importance of the top 20 genes. (E) Least absolute shrinkage and selection operator (LASSO) logistic regression
algorithm for screening feature genes. The distribution of LASSO coefficients for the 11 genes that initially met the diagnostic criteria versus the
amount of genes determined by sample binomial deviation. (F) Venn diagram of three machine learning algorithm feature genes taken as diagnostic
biomarkers. (G)Heat map of correlation analysis among the signature genes, the size of the circles represents the size of correlation between genes, red
represents positive correlation and green represents negative correlation.
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FIGURE 6
Construction and validation of the diagnostic model. (A) Construction of the artificial neural network (ANN) model, which contains the input layer,
hidden layer and output layer. (B) Training set receiver operating characteristic curve (ROC), the size of the area under the curve (AUC) demonstrates the
feasibility of the model. (C) Validation set ROC, the size of AUC can indicate the applicability of the model. (D) Diagnostic line graph of HBV-LC feature
genes, each gene corresponds to a score, and the scores of all genes are summed to obtain the total score. (E) Calibration curve to assess the
predictive performance of the diagnostic line graph. (F) Decision curve analysis (DCA), which compares the clinical benefit of the diagnostic line graph
model with other diagnostic indicators.
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selected the optimal number of typing k = 2 (Figures 9A, B) and
classified the samples into two subtypes C1 and C2. Validation was
performed by PCA plots, and the results showed that there was
distinguishable between the two subtypes on the scatter plot
(Figure 9C). GSVA analysis was performed on both C1 and
C2 subtypes, and the results showed that the Ribosome pathway
plays an important role in the division of the two subtypes. It
indicates that the signature genes can be involved in HBV-LC typing
by regulating the ribosome function (Figure 9D). Excluding the
results without statistical significance, LOXL1, ITGBL1 and
FBLN5 were expressed upregulated in C1 subtype C2 subtype
expression was downregulated. While BBOX1 was downregulated
in C1 subtype expression C2 subtype expression was upregulated
(Figures 9E, F). Thus by the expression of these feature genes we can
classify HBV-LC into two subtypes.

3.9 Immune infiltration analysis of two
subtypes of HBV-LC

The ratio of 22 immune cells between the two subtypes C1 and
C2 was evaluated using the CIBERSORT algorithm and the results
are presented as bar graphs (Figure 10A). Correlation analysis
between immune cells showed a positive correlation between

T cells gamma delta and Plasma cells (r = 0.59) and a negative
correlation between T cells gamma delta and T cells CD8 (r = −0.66)
(Figure 10B). The difference in the amount of immune cell
infiltration between the C1 and C2 subtypes, after removing
results that were not statistically significant, showed that in the
C1 subtype B cells memory, T cells CD8, T cells CD4 naïve, T cells
CD4 memory activated and T cells regulatory (Tregs) expression
was higher than that of the C2 subtype. In contrast, the expression of
Monocytes and Dendritic cells resting was higher in C2 subtype than
in C1 subtype (Figure 10C). The correlation between the feature
genes and 22 immune cells showed that FBLN5, ITGBL1, LOXL1,
MACROH2A1 and PPP4R1 were positively correlated with all five
immune cell correlations that were highly expressed in the
C1 subtype and negatively correlated with all immune cells that
were highly expressed in the C2 subtype. In contrast, BBOX1 was
positively correlated with both immune cell correlates highly
expressed in the C2 subtype and negatively correlated with the
vast majority of immune cells highly expressed in the C1 subtype
(Figure 10D). Differences in 10 immune functions between C1 and
C2 subtypes, after removing results that were not statistically
significant, showed that APC_co_stimulation and HLA
expression were higher in C1 subtype than in C2 subtype. T_
cell_co-inhibition expression was higher in C2 subtype than in
C1 subtype (Figure 10E). The correlation between feature genes

FIGURE 7
Feature gene expression differences. (A–F) Box line plots of expression differences between patient and control groups for each feature gene,
compared as the mean of gene expression box line plots, with the numbers on them representing p values.
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and immune function showed that FBLN5, ITGBL1, LOXL1,
MACROH2A1 and PPP4R1 were positively correlated with both
immune function correlations of high expression in C1 subtype and
negatively correlated with immune function of high expression in
C2 subtype. In contrast, BBOX1 was positively correlated with the
immune function correlation of the highly expressed C2 subtype and
negatively correlated with the two immune functions of the highly
expressed C1 subtype (Figure 10F).

4 Discussion

Hepatitis B virus infection is a major challenge to global public
health. According to theWorld Health Organization, approximately
2 billion people worldwide are infected with hepatitis B virus, of
which 257 million have CHB (Ho et al., 2020). A large number of
people with CHB will progress to HBV-LC, and more than
700,000 people die each year due to HBV-LC (Kobashi et al.,

FIGURE 8
GSEA and ssGSEA functional enrichment analysis of the feature genes. (A–F) Single-gene GSEA analysis of the feature genes, showing the top
5 functional pathways upregulated versus downregulated for each gene. (G) Box line plot of differential expression of functional ssGSEA scores of
signature gene sets between patient groups and control groups. (H)Correlation between feature genes and function, red represents positive correlation,
green represents negative correlation. *p < 0.05, **p < 0.01, ***p < 0.001. ns, no significance.
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2011). And the risk of progression to HCC is much greater in HBV-
LC patients than in non-cirrhotic CHB patients (Do et al., 2014; Zhai
et al., 2023). Therefore, the search for effective diagnostic
biomarkers of HBV-LC is of great clinical value to improve its
prognosis and to explore the underlying mechanisms of its
formation. Cirrhosis during the transformation of CHB to HBV-
LC is the result of cytopathic adaptation, where liver parenchymal
cells and non-parenchymal cells undergo functional changes to
adapt to the disrupted liver microenvironment (Bi and Ge, 2014;

Dash et al., 2020; Meng et al., 2022). Therefore, this study attempts
to screen diagnostic biomarkers of HBV-LC by high-throughput
sequencing technology with bioinformatics approach and to
investigate the changes that occur during the progression of CHB
to HBV-LC. Hepatitis B virus infection will cause various immune
responses to occur, and immune infiltration plays an important role
in the progression of liver fibrosis (Zaki et al., 2022). In order to
better investigate HBV-LC clinically, this study also attempted to
subtype HBV-LC using the screened feature genes and to analyze the

FIGURE 9
Typing and validation of HBV-LC based on feature genes. (A) Consensus matrix heat map of disease typing, by observing whether the blank area
between different subtypes is clean to initially determine the typing effect, k = 2. (B) Consensus CDF map classified as k = 2-9, by observing the dynamic
change of consistency index with the change of CDF value for different subtype numbers, k= 2was selected. (C) PCAmap of disease samples, the feature
genes effectively classified hepatitis B-related cirrhotic patients into two subtypes (C1 andC2). (D)GSVA analysis between different subtypes of HBV-
LC. (E) Heat map showing the expression of characteristic genes between two subtypes of HBV-LC, C1 and C2. (F) Box line plot of gene expression
differences between two subtypes of C1 and C2. *p < 0.05, **p < 0.01, ***p < 0.001.
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immune cell infiltration and immune function of different subtypes
of HBV-LC to investigate the severity of the disease in patients with
different subtypes.

In our study, 36 DEGs were identified by differential analysis
from the gene expression matrix file of CHB and HBV-LC, of which
30 were upregulated and 6 were downregulated in expression. The
WGCNA method was used to screen for highly correlated co-
expressed genes with HBV-LC, of which 30 genes with the same
DEGs were used as candidates. For further screening of diagnostic
biomarkers, three machine learning algorithms, SVM-RFE, RF and
LASSO logistic regression, were used. Six genes, BBOX1, LOXL1,
MACROH2A1, ITGBL1, FBLN5 and PPP4R1, were finally
identified as potential diagnostic biomarkers for HBV-LC. We
next performed ANN model construction and validation using
these 6 genes. the ROC results showed that these 6 feature genes

have good accuracy and generalizability for the diagnosis of
HBV-LC.

Differential analysis was conducted to discern gene expression
variations between CHB and HBV-LC conditions. The outcomes
unveiled a distinct pattern wherein BBOX1 exhibited an
upregulation in CHB but a downregulation in HBV-LC
expression. Conversely, the remaining five genes exhibited an
upregulation in HBV-LC expression while being downregulated
in CHB expression. Notably, BBOX1 has been identified in vital
organs such as the liver, kidney, and brain. Functionally, it is
associated with L-carnitine synthesis, encoding Gamma-
butyrobetaine hydroxylase—a pivotal enzyme governing carnitine
synthesis. This enzyme is notably vital due to its role in L-carnitine
production, a pivotal molecule in the realm of fatty acid metabolism
(Rigault et al., 2006). The findings suggest a potential reduction in

FIGURE 10
Analysis of immune infiltration between different subtypes. (A) Bar graph of the relative proportions of 22 immune cells between the two subtypes
C1 and C2. (B)Heatmap of the correlation between 22 immune cells. (C) Box line plot of expression differences of immune cells between two subtypes of
C1 and C2. (D) Heat map of correlation between feature genes and 22 immune cells. (E) Box line plot of expression differences between C1 and
C2 subtypes for 10 immune functions. (F) Heat map of the correlation between the feature genes and 10 immune functions. *p < 0.05, **p < 0.01,
***p < 0.001.
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hepatic fatty acid metabolism during the onset of HBV-LC.
Moreover, studies have demonstrated that a decrease in the
expression of BBOX1 antisense RNA 1 (BBOX1-AS1)
corresponds to diminished cellular viability and proliferation
(Zhao et al., 2022), and low BBOX1 expression serves as a
prognostic biomarker for clear cell renal cell carcinoma (RCC)
(Kim et al., 2023). Regrettably, the existing literature does not
encompass any articles pertaining to the association between
BBOX1 and cirrhosis. In contrast, LOXL1 is classified within the
LOX gene family, encoding Lysyl oxidase-like 1. Portal fibroblasts
are responsible for the synthesis of LOX and LOXL1, which
subsequently undergo cross-linking with elastin. Notably, their
enzymatic activity undergoes augmentation during the transition
of fibroblasts into myofibroblasts (Li et al., 2007; Perepelyuk et al.,
2013). Therefore, upregulation of LOXL1 gene expression will
promote the development of liver fibrosis and even cirrhosis.
And it has been shown that LOX family has been identified as a
therapeutic target for liver fibrosis (Chen et al., 2020).
MACROH2A1 is a gene encoding an isoform of histone H2A
protein. Both isoforms of MACROH2A1 (MACROH2A1.2 and
MACROH2A1.2) have been shown to increase with age in both
rodent and human livers and are strong immunohistochemical
markers of human cirrhosis and HCC (Macias et al., 2021).
ITGBL1 is a gene encoding a beta-integrin-related protein, and
ITGBL1 protein is an extracellular matrix protein (Sun et al., 2016).
ITGB1 has been shown to be a key regulator of fibrosis in patients
with hepatitis B virus-associated liver fibrosis (HBV-LF) by
analyzing the genetic profile of these patients (Wang et al., 2017).
FBLN5 encodes Fibulin-5, which belongs to the Fibulin family of
secreted extracellular matrix proteins, and is a target of TGF-β in
fibroblasts and endothelial cells (Lee and Schiemann, 2011).
Therefore, upregulation of FBLN5 expression can also promote
HBV-LC formation. PPP4R1 encodes serine/threonine protein
phosphatase 4 regulatory subunit 1. No explicit investigation has
established a direct link between PPP4R1 and the onset of cirrhosis.
Nevertheless, in a particular study, heightened expression of
CCDC6 exhibited a robust correlation with unfavorable
prognoses in hepatobiliary cancer cases. Furthermore, a
significant association was observed between the CCDC6 gene, its
corresponding protein, and PPP4R1 (Wu et al., 2022). The incidence
of HCC was significantly higher in HBV-LC patients than in CHB
non-cirrhotic patients (Do et al., 2014; Zhang et al., 2023).
Therefore, there should also be a relationship between the
upregulation of PPP4R1 expression and the formation of cirrhosis.

In addition, we performed single-gene GSEA analysis of the
feature genes. The results showed that BBOX1 was highly expressed
in bile secretion function, and the downregulation of
BBOX1 expression in the presence of HBV-LC reduced bile
secretion from hepatocytes, which led to a weakened digestion
and absorption of fat by the organism. This view is consistent
with the aforementioned decrease in fatty acid metabolic function
due to BBOX1 downregulation. Both FBLN5 and PPP4R1 were
significantly enriched in the Phosphatidylinositol signaling system,
indicating that these two genes could be involved in the conversion
of CHB to HBV-LC by regulating the signaling process of
phosphatidylinositol. While three genes, ITGBL1, LOXL1 and
MACROH2A1, were highly expressed in the Proteasome
pathway, PPP4R1 was highly expressed in the p53 signaling

pathway. Both pathways regulate cell cycle progression, thus
suggesting that these four genes may be involved in the
conversion of CHB to HBV-LC by regulating cell cycle
progression (Do et al., 2014; Hernández Borrero and El-Deiry,
2021). Moreover, ITGBL1, LOXL1 and PPP4R1 are all
significantly enriched in the Ribosome pathway, so these three
genes may also influence the formation of cirrhosis by regulating
ribosome function.

22 immune cell infiltration analyses were performed. The results
showed that the expression of B cells memory, T cells CD8, T cells
CD4 naive, T cells CD4 memory activated and T cells regulatory
(Tregs) was higher in C1 subtype than in C2 subtype. The expression
of Monocytes and Dendritic cells resting was higher in the
C2 subtype than in the C1 subtype. The correlation between the
feature genes and 22 immune cells showed that ITGBL1, LOXL1 and
FBLN5 were positively correlated with five immune cells of
C1 subtype with high infiltration, and negatively correlated with
two immune cells of C2 subtype with high infiltration. In contrast,
BBOX1 was positively correlated with both immune cell correlations
of C2 subtype hyperinfiltrative and negatively correlated with all five
immune cells of C1 subtype hyperinfiltrative. The degree of damage
in hepatitis B virus-infected patients correlated with the degree of
immunity of the patients. Hepatitis B virus is a non-cellular lesion on
infected hepatocytes, and the resulting liver damage is caused by an
auto-specific immune response. T cells not only clear hepatitis B
virus, but also cause damage to damaged hepatocytes (Guidotti and
Chisari, 2006). Therefore, the higher the T-cell activity, the more
severe the liver damage will be, and the more severe the cirrhosis will
be in order to repair the liver damage. The results of immune cell
infiltration show that the C1 subtype has high expression of multiple
T cells, while the C2 subtype has low expression of dendritic cells as
antigen-presenting cells (APC). From the results of immune cell
infiltration analysis, the extent of disease in patients with C1 subtype
HBV-LC will probably be heavier than that of C2 subtype.

10 immune function analyses were performed. The results
showed that APC_co_stimulation and HLA expression were
higher in the C1 subtype than in the C2 subtype after removal of
statistically insignificant results. T_cell_co-inhibition expression
was higher in the C2 subtype than in the C1 subtype. The
correlation between feature genes and immune functions showed
that ITGBL1, LOXL1 and FBLN5 were positively correlated with
both immune functions highly expressed in the C1 subtype and
negatively correlated with immune functions highly expressed in the
C2 subtype. In contrast, BBOX1 was positively correlated with the
immune function correlation of high expression in the C2 subtype
and negatively correlated with both immune functions of high
expression in the C1 subtype. Human leukocyte antigen (HLA) is
the gene encoding the MHC protein, and T cell activation and
differentiation requires binding to MHC II molecules and
costimulatory molecules on antigen-presenting cells (APCs)
(Bertram et al., 2004; Mott et al., 2014; Zhao et al., 2022; Gong
et al., 2022; Xiong et al., 2023). The C1 subtype is highly expressed in
APC_co_stimulation and HLA functions, while the C2 subtype is
highly expressed in T_cell_co-inhibition functions. Therefore,
HBV-LC patients with C1 subtype will have significantly higher
T-cell activity than those with C2 subtype. Therefore, the degree of
disease may be heavier in the C1 subtype than in the C1 subtype by
immune function analysis. Combined with the analysis of immune
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cell infiltration and immune function between different subtypes of
HBV-LC, both concluded that patients with subtype C1 may be
sicker than those with subtype C2.

Although our study elucidates the possible mechanisms of CHB
conversion to HBV-LC and provides clinically meaningful options
for the early diagnosis and treatment of HBV-LC patients, our study
still has some degree of limitations. First, this study was a
retrospective study and therefore needs to be validated by future
prospective studies. Second, the sample size of this study was limited
and was obtained from the GEO database. Third, although our study
identified HBV-LC associated genes and elucidated some of the
mechanisms, further experiments are needed to elucidate the more
in-depth mechanisms of these signature genes in the disease.

5 Conclusion

By using bioinformatics analysis, this study identified six feature
genes, BBOX1, LOXL1, MACROH2A1, ITGBL1, FBLN5, and
PPP4R1, involved in the conversion of CHB to HBV-LC,
providing important information to elucidate the potential
molecular mechanism of CHB progression to HBV-LC. This study
also screened four genes ITGBL1, LOXL1, FBLN5, and
BBOX1 associated with HBV-LC subtype delineation by analysis of
feature genes. and explored the possible disease severity between
patients with different subtypes at the immune level. Our findings will
probably contribute to the design of better diagnostic and therapeutic
approaches for HBV-LC based on molecular mechanisms.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

SZ: Conceptualization, Writing–original draft. CJ:
Writing–original draft. LJ: Writing–original draft. HC:

Writing–original draft. JH: Writing–original draft. JZ:
Writing–original draft. RW: Writing–original draft. HC:
Conceptualization, Writing–review and editing. GY:
Conceptualization, Writing–review and editing. GT:
Conceptualization, Writing–review and editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by grants from the Luzhou Science and Technology
Department Applied Basic Research Program (No. 2022-JYJ-145),
the Sichuan Province Science and Technology Department of
foreign (border) high-end talent introduction project (No.
2023JDGD0037), and Sichuan Provincial Medical Association
(No. Q22027).

Acknowledgments

We acknowledge the support provided by the Southwest
Medical University Student Innovation and Entrepreneurship
Program.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bertram, E. M., Dawicki, W., and Watts, T. H. (2004). Role of T cell costimulation in
anti-viral immunity. Seminars Immunol. 16, 185–196. doi:10.1016/j.smim.2004.02.006

Bi, J., and Ge, S. (2014). Potential roles of BMP9 in liver fibrosis. Int. J. Mol. Sci. 15,
20656–20667. doi:10.3390/ijms151120656

Chan, A. C., Fan, S. T., Lo, C. M., Liu, C. L., Chan, S. C., Ng, K. K., et al. (2009). Liver
transplantation for acute-on-chronic liver failure.Hepatol. Int. 3, 571–581. doi:10.1007/
s12072-009-9148-8

Chen, W., Yang, A., Jia, J., Popov, Y. V., Schuppan, D., and You, H. (2020). Lysyl
oxidase (LOX) family members: rationale and their potential as therapeutic targets for
liver fibrosis. Hepatol. Baltim. Md.) 72, 729–741. doi:10.1002/hep.31236

Chen, X., Chi, H., Zhao, X., Pan, R., Wei, Y., and Han, Y. (2022). Role of exosomes in
immune microenvironment of hepatocellular carcinoma. J. Oncol. 2022, 2521025.
doi:10.1155/2022/2521025

Chen, X., Tan, Y., Wang, S., Wu, X., Liu, R., Yang, X., et al. (2021). A CRISPR-cas12b-
based platform for ultrasensitive, rapid, and highly specific detection of hepatitis B virus
genotypes B and C in clinical application. Front. Bioeng. Biotechnol. 9, 743322. doi:10.
3389/fbioe.2021.743322

Chi, H., Chen, H., Wang, R., Zhang, J., Jiang, L., Zhang, S., et al. (2023c). Proposing
new early detection indicators for pancreatic cancer: combining machine learning and
neural networks for serum miRNA-based diagnostic model. Front. Oncol. 13, 1244578.
doi:10.3389/fonc.2023.1244578

Chi, H., Gao, X., Xia, Z., Yu, W., Yin, X., Pan, Y., et al. (2023b). FAM family gene
prediction model reveals heterogeneity, stemness and immune microenvironment of
UCEC. Front. Mol. Biosci. 10, 1200335. doi:10.3389/fmolb.2023.1200335

Chi, H., Zhao, S., Yang, J., Gao, X., Peng, G., Zhang, J., et al. (2023a). T-cell exhaustion
signatures characterize the immune landscape and predict HCC prognosis via
integrating single-cell RNA-seq and bulk RNA-sequencing. Front. Immunol. 14,
1137025. doi:10.3389/fimmu.2023.1137025

Chung, G. E., Lee, J. H., and Kim, Y. J. (2014). Does antiviral therapy reduce
complications of cirrhosis? World J. gastroenterology 20, 7306–7311. doi:10.3748/
wjg.v20.i23.7306

Cui, Y., Zhang, P., Liang, X., Xu, J., Liu, X., Wu, Y., et al. (2022). Association of KDR
mutation with better clinical outcomes in pan-cancer for immune checkpoint
inhibitors. Am. J. cancer Res. 12, 1766–1783.

Frontiers in Molecular Biosciences frontiersin.org16

Zhang et al. 10.3389/fmolb.2023.1275897

https://doi.org/10.1016/j.smim.2004.02.006
https://doi.org/10.3390/ijms151120656
https://doi.org/10.1007/s12072-009-9148-8
https://doi.org/10.1007/s12072-009-9148-8
https://doi.org/10.1002/hep.31236
https://doi.org/10.1155/2022/2521025
https://doi.org/10.3389/fbioe.2021.743322
https://doi.org/10.3389/fbioe.2021.743322
https://doi.org/10.3389/fonc.2023.1244578
https://doi.org/10.3389/fmolb.2023.1200335
https://doi.org/10.3389/fimmu.2023.1137025
https://doi.org/10.3748/wjg.v20.i23.7306
https://doi.org/10.3748/wjg.v20.i23.7306
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1275897


Dash, S., Aydin, Y., Widmer, K. E., and Nayak, L. (2020). Hepatocellular carcinoma
mechanisms associated with chronic HCV infection and the impact of direct-acting
antiviral treatment. J. Hepatocell. carcinoma 7, 45–76. doi:10.2147/JHC.S221187

de Jongh, F. E., Janssen, H. L., de Man, R. A., Hop, W. C., Schalm, S. W., and van
Blankenstein, M. (1992). Survival and prognostic indicators in hepatitis B surface
antigen-positive cirrhosis of the liver. Gastroenterology 103, 1630–1635. doi:10.1016/
0016-5085(92)91188-a

Do, A. L., Wong, C. R., Nguyen, L. H., Nguyen, V. G., Trinh, H., and Nguyen, M. H.
(2014). Hepatocellular carcinoma incidence in noncirrhotic patients with chronic
hepatitis B and patients with cirrhosis of all etiologies. J. Clin. gastroenterology 48,
644–649. doi:10.1097/MCG.0000000000000015

Dong, Y., Yuan, Q., Ren, J., Li, H., Guo, H., Guan, H., et al. (2023). Identification and
characterization of a novel molecular classification incorporating oxidative stress and
metabolism-related genes for stomach adenocarcinoma in the framework of predictive,
preventive, and personalized medicine. Front. Endocrinol. 14, 1090906. doi:10.3389/
fendo.2023.1090906

Gong, X., Chi, H., Strohmer, D. F., Teichmann, A. T., Xia, Z., and Wang, Q. (2022).
Exosomes: A potential tool for immunotherapy of ovarian cancer. Front. Immunol. 13,
1089410. doi:10.3389/fimmu.2022.1089410

Guidotti, L. G., and Chisari, F. V. (2006). Immunobiology and pathogenesis of viral
hepatitis. Annu. Rev. pathology 1, 23–61. doi:10.1146/annurev.pathol.1.110304.100230

Harrison, P. M. (2015). Management of patients with decompensated cirrhosis. Clin.
Med. Lond. Engl. 15, 201–203. doi:10.7861/clinmedicine.15-2-201

Hernández Borrero, L. J., and El-Deiry, W. S. (2021). Tumor suppressor p53: biology,
signaling pathways, and therapeutic targeting. Biochimica biophysica acta. Rev. cancer
1876, 188556. doi:10.1016/j.bbcan.2021.188556

Ho, J. K., Jeevan-Raj, B., and Netter, H. J. (2020). Hepatitis B virus (HBV) subviral
particles as protective vaccines and vaccine platforms. Viruses 12, 126. doi:10.3390/
v12020126

Huang, L., Jin, W., Bao, Y., Zeng, X., Zhang, Y., Zhou, J., et al. (2023c). Identification
and validation of long noncoding RNA AC083900.1 and RP11-283C24.1 for prediction
of progression of osteosarcoma. Mutat. Res. 827, 111828. doi:10.1016/j.mrfmmm.2023.
111828

Huang, L., Sun, F., Liu, Z., Jin, W., Zhang, Y., Chen, J., et al. (2023a). Probing the
potential of defense response-associated genes for predicting the progression, prognosis,
and immune microenvironment of osteosarcoma. Cancers 15, 2405. doi:10.3390/
cancers15082405

Huang, X., Chi, H., Gou, S., Guo, X., Li, L., Peng, G., et al. (2023b). An aggrephagy-
related LncRNA signature for the prognosis of pancreatic adenocarcinoma. Genes 14,
124. doi:10.3390/genes14010124

Jeong, S. H., Jung, Y. K., Yang, J. W., Park, S. J., Kim, J. W., Kwon, O. S., et al. (2012).
Efficacy of peginterferon and ribavirin is associated with the IL28B gene in Korean
patients with chronic hepatitis C. Clin. Mol. hepatology 18, 360–367. doi:10.3350/cmh.
2012.18.4.360

Jin, W., Liu, Z., Zhang, Y., Che, Z., and Gao, M. (2021a). The effect of individual
musculoskeletal conditions on depression: updated insights from an Irish longitudinal
study on aging. Front. Med. 8, 697649. doi:10.3389/fmed.2021.697649

Jin, W., Yang, Q., Chi, H., Wei, K., Zhang, P., Zhao, G., et al. (2022). Ensemble deep
learning enhanced with self-attention for predicting immunotherapeutic responses to
cancers. Front. Immunol. 13, 1025330. doi:10.3389/fimmu.2022.1025330

Jin, W., Zhang, Y., Liu, Z., Che, Z., Gao, M., and Peng, H. (2021b). Exploration of the
molecular characteristics of the tumor-immune interaction and the development of an
individualized immune prognostic signature for neuroblastoma. J. Cell. physiology 236,
294–308. doi:10.1002/jcp.29842

Kim, K. S., Moon, K. M., Min, K. W., Jung, W. Y., Shin, S. J., Lee, S. W., et al. (2023).
Low gamma-butyrobetaine dioxygenase (BBOX1) expression as a prognostic biomarker
in patients with clear cell renal cell carcinoma: A machine learning approach.
J. pathology. Clin. Res. 9, 236–248. doi:10.1002/cjp2.315

Kobashi, H., Miyake, Y., Ikeda, F., Yasunaka, T., Nishino, K., Moriya, A., et al. (2011).
Long-term outcome and hepatocellular carcinoma development in chronic hepatitis B
or cirrhosis patients after nucleoside analog treatment with entecavir or lamivudine.
Hepatology Res. official J. Jpn. Soc. Hepatology 41, 405–416. doi:10.1111/j.1872-034X.
2011.00785.x

Lee, Y. H., and Schiemann, W. P. (2011). Fibromodulin suppresses nuclear factor-
kappaB activity by inducing the delayed degradation of IKBA via a JNK-dependent
pathway coupled to fibroblast apoptosis. J. Biol. Chem. 286, 6414–6422. doi:10.1074/jbc.
M110.168682

Li, H., Guo, L., Su, K., Li, C., Jiang, Y., Wang, P., et al. (2023b). Construction and
validation of tace therapeutic efficacy by alr score and nomogram: A large, multicenter
study. J. Hepatocell. carcinoma 10, 1009–1017. doi:10.2147/JHC.S414926

Li, H., Wu, Z., Chen, J., Su, K., Guo, L., Xu, K., et al. (2023a). External radiotherapy
combined with sorafenib has better efficacy in unresectable hepatocellular carcinoma: A
systematic review and meta-analysis. Clin. Exp. Med. 23, 1537–1549. doi:10.1007/
s10238-022-00972-4

Li, X. Y., Zhao, Z. J., Wang, J. B., Shao, Y. H., Hui, L., You, J. X., et al. (2022). m7G
methylation-related genes as biomarkers for predicting overall survival outcomes for

hepatocellular carcinoma. Front. Bioeng. Biotechnol. 10, 849756. doi:10.3389/fbioe.2022.
849756

Li, Z., Dranoff, J. A., Chan, E. P., Uemura, M., Sévigny, J., and Wells, R. G. (2007).
Transforming growth factor-beta and substrate stiffness regulate portal fibroblast
activation in culture. Hepatol. Baltim. Md 46, 1246–1256. doi:10.1002/hep.21792

Lurie, Y., Webb, M., Cytter-Kuint, R., Shteingart, S., and Lederkremer, G. Z. (2015).
Non-invasive diagnosis of liver fibrosis and cirrhosis. World J. gastroenterology 21,
11567–11583. doi:10.3748/wjg.v21.i41.11567

Macias, R. I. R., Monte, M. J., Serrano, M. A., González-Santiago, J. M., Martín-
Arribas, I., Simão, A. L., et al. (2021). Impact of aging on primary liver cancer:
epidemiology, pathogenesis and therapeutics. Aging 13, 23416–23434. doi:10.18632/
aging.203620

Meng, Y., Zhao, T., Zhang, Z., and Zhang, D. (2022). The role of hepatic
microenvironment in hepatic fibrosis development. Ann. Med. 54, 2830–2844.
doi:10.1080/07853890.2022.2132418

Mott, K. R., Allen, S. J., Zandian, M., Akbari, O., Hamrah, P., Maazi, H., et al. (2014).
Inclusion of CD80 in HSV targets the recombinant virus to PD-L1 on DCs and allows
productive infection and robust immune responses. PloS one 9, e87617. doi:10.1371/
journal.pone.0087617

Perepelyuk, M., Terajima, M., Wang, A. Y., Georges, P. C., Janmey, P. A., Yamauchi,
M., et al. (2013). Hepatic stellate cells and portal fibroblasts are the major cellular
sources of collagens and lysyl oxidases in normal liver and early after injury. Am.
J. physiology. Gastrointest. liver physiology 304, G605–G614. doi:10.1152/ajpgi.00222.
2012

Ren, Q., Zhang, P., Lin, H., Feng, Y., Chi, H., Zhang, X., et al. (2023). A novel signature
predicts prognosis and immunotherapy in lung adenocarcinoma based on cancer-
associated fibroblasts. Front. Immunol. 14, 1201573. doi:10.3389/fimmu.2023.1201573

Rigault, C., Le Borgne, F., and Demarquoy, J. (2006). Genomic structure, alternative
maturation and tissue expression of the human BBOX1 gene. Biochimica biophysica
acta 1761, 1469–1481. doi:10.1016/j.bbalip.2006.09.014

Shen, Y., Chi, H., Xu, K., Li, Y., Yin, X., Chen, S., et al. (2022). A novel classification
model for lower-grade glioma patients based on pyroptosis-related genes. Brain Sci. 12,
700. doi:10.3390/brainsci12060700

Song, B., Chi, H., Peng, G., Song, Y., Cui, Z., Zhu, Y., et al. (2022b). Characterization of
coagulation-related gene signature to predict prognosis and tumor immune
microenvironment in skin cutaneous melanoma. Front. Oncol. 12, 975255. doi:10.
3389/fonc.2022.975255

Song, B., Wu, P., Liang, Z., Wang, J., Zheng, Y., Wang, Y., et al. (2022a). A novel
necroptosis-related gene signature in skin cutaneous melanoma prognosis and tumor
microenvironment. Front. Genet. 13, 917007. doi:10.3389/fgene.2022.917007

Song, B., Zheng, Y., Chi, H., Zhu, Y., Cui, Z., Chen, L., et al. (2023b). Revealing the
roles of glycosphingolipid metabolism pathway in the development of keloid: A conjoint
analysis of single-cell and machine learning. Front. Immunol. 14, 1139775. doi:10.3389/
fimmu.2023.1139775

Song, G., Peng, G., Zhang, J., Song, B., Yang, J., Xie, X., et al. (2023a). Uncovering the
potential role of oxidative stress in the development of periodontitis and establishing a
stable diagnostic model via combining single-cell and machine learning analysis. Front.
Immunol. 14, 1181467. doi:10.3389/fimmu.2023.1181467

Spinzi, G., Terruzzi, V., andMinoli, G. (2001). Liver biopsy.N. Engl. J. Med. 344, 2030.

Stasi, C., and Milani, S. (2017). Evolving strategies for liver fibrosis staging: non-
invasive assessment. World J. gastroenterology 23, 191–196. doi:10.3748/wjg.v23.i2.191

Su, K., Guo, L., Ma, W., Wang, J., Xie, Y., Rao, M., et al. (2022a). PD-1 inhibitors plus
anti-angiogenic therapy with or without intensity-modulated radiotherapy for
advanced hepatocellular carcinoma: A propensity score matching study. Front.
Immunol. 13, 972503. doi:10.3389/fimmu.2022.972503

Su, K., Liu, Y., Wang, P., He, K., Wang, F., Chi, H., et al. (2022b). Heat-shock protein
90α is a potential prognostic and predictive biomarker in hepatocellular carcinoma: A
large-scale and multicenter study.Hepatol. Int. 16, 1208–1219. doi:10.1007/s12072-022-
10391-y

Su, K., Shen, Q., Tong, J., Gu, T., Xu, K., Li, H., et al. (2023). Construction and
validation of a nomogram for HBV-related hepatocellular carcinoma: A large,
multicenter study. Ann. hepatology 28, 101109. doi:10.1016/j.aohep.2023.101109

Sun, L., Wang, D., Li, X., Zhang, L., Zhang, H., and Zhang, Y. (2016). Extracellular
matrix protein ITGBL1 promotes ovarian cancer cell migration and adhesion through
Wnt/PCP signaling and FAK/SRC pathway. Biomed. Pharmacother. = Biomedecine
Pharmacother. 81, 145–151. doi:10.1016/j.biopha.2016.03.053

Wang, M., Gong, Q., Zhang, J., Chen, L., Zhang, Z., Lu, L., et al. (2017).
Characterization of gene expression profiles in HBV-related liver fibrosis patients
and identification of ITGBL1 as a key regulator of fibrogenesis. Sci. Rep. 7, 43446.
doi:10.1038/srep43446

Wang, S. B., Wang, J. H., Chen, J., Giri, R. K., and Chen, M. H. (2012). Natural history
of liver cirrhosis in south China based on a large cohort study in one center: A follow-up
study for up to 5 years in 920 patients. Chin. Med. J. 125, 2157–2162.

Wang, Z., Yuan, Q., Chen, X., Luo, F., Shi, X., Guo, F., et al. (2023). A prospective
prognostic signature for pancreatic adenocarcinoma based on ubiquitination-related

Frontiers in Molecular Biosciences frontiersin.org17

Zhang et al. 10.3389/fmolb.2023.1275897

https://doi.org/10.2147/JHC.S221187
https://doi.org/10.1016/0016-5085(92)91188-a
https://doi.org/10.1016/0016-5085(92)91188-a
https://doi.org/10.1097/MCG.0000000000000015
https://doi.org/10.3389/fendo.2023.1090906
https://doi.org/10.3389/fendo.2023.1090906
https://doi.org/10.3389/fimmu.2022.1089410
https://doi.org/10.1146/annurev.pathol.1.110304.100230
https://doi.org/10.7861/clinmedicine.15-2-201
https://doi.org/10.1016/j.bbcan.2021.188556
https://doi.org/10.3390/v12020126
https://doi.org/10.3390/v12020126
https://doi.org/10.1016/j.mrfmmm.2023.111828
https://doi.org/10.1016/j.mrfmmm.2023.111828
https://doi.org/10.3390/cancers15082405
https://doi.org/10.3390/cancers15082405
https://doi.org/10.3390/genes14010124
https://doi.org/10.3350/cmh.2012.18.4.360
https://doi.org/10.3350/cmh.2012.18.4.360
https://doi.org/10.3389/fmed.2021.697649
https://doi.org/10.3389/fimmu.2022.1025330
https://doi.org/10.1002/jcp.29842
https://doi.org/10.1002/cjp2.315
https://doi.org/10.1111/j.1872-034X.2011.00785.x
https://doi.org/10.1111/j.1872-034X.2011.00785.x
https://doi.org/10.1074/jbc.M110.168682
https://doi.org/10.1074/jbc.M110.168682
https://doi.org/10.2147/JHC.S414926
https://doi.org/10.1007/s10238-022-00972-4
https://doi.org/10.1007/s10238-022-00972-4
https://doi.org/10.3389/fbioe.2022.849756
https://doi.org/10.3389/fbioe.2022.849756
https://doi.org/10.1002/hep.21792
https://doi.org/10.3748/wjg.v21.i41.11567
https://doi.org/10.18632/aging.203620
https://doi.org/10.18632/aging.203620
https://doi.org/10.1080/07853890.2022.2132418
https://doi.org/10.1371/journal.pone.0087617
https://doi.org/10.1371/journal.pone.0087617
https://doi.org/10.1152/ajpgi.00222.2012
https://doi.org/10.1152/ajpgi.00222.2012
https://doi.org/10.3389/fimmu.2023.1201573
https://doi.org/10.1016/j.bbalip.2006.09.014
https://doi.org/10.3390/brainsci12060700
https://doi.org/10.3389/fonc.2022.975255
https://doi.org/10.3389/fonc.2022.975255
https://doi.org/10.3389/fgene.2022.917007
https://doi.org/10.3389/fimmu.2023.1139775
https://doi.org/10.3389/fimmu.2023.1139775
https://doi.org/10.3389/fimmu.2023.1181467
https://doi.org/10.3748/wjg.v23.i2.191
https://doi.org/10.3389/fimmu.2022.972503
https://doi.org/10.1007/s12072-022-10391-y
https://doi.org/10.1007/s12072-022-10391-y
https://doi.org/10.1016/j.aohep.2023.101109
https://doi.org/10.1016/j.biopha.2016.03.053
https://doi.org/10.1038/srep43446
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1275897


mRNA-lncRNA with experimental validation in vitro and vivo. Funct. Integr. genomics
23, 263. doi:10.1007/s10142-023-01158-1

Wu, T., Jiang, X., Xu, B., Zhong, Q., Zheng, J., Zhang, X., et al. (2022). High expression
of CCDC6 in relation to unfavorable outcome and immune cells infiltration in
hepatobiliary carcinoma. J. Cancer 13, 3378–3395. doi:10.7150/jca.76050

Xiong, J., Chi, H., Yang, G., Zhao, S., Zhang, J., Tran, L. J., et al. (2023).
Revolutionizing anti-tumor therapy: unleashing the potential of B cell-derived
exosomes. Front. Immunol. 14, 1188760. doi:10.3389/fimmu.2023.1188760

Zaki, M. Y. W., Fathi, A. M., Samir, S., Eldafashi, N., William, K. Y., Nazmy, M. H.,
et al. (2022). Innate and adaptive immunopathogeneses in viral hepatitis; crucial
determinants of hepatocellular carcinoma. Cancers 14, 1255. doi:10.3390/
cancers14051255

Zhai, X., Xia, Z., Du, G., Zhang, X., Xia, T., Ma, D., et al. (2023). LRP1B suppresses
HCC progression through the NCSTN/PI3K/AKT signaling axis and affects
doxorubicin resistance. Genes & Dis. 10, 2082–2096. doi:10.1016/j.gendis.2022.10.021

Zhang, B., Yuan, Q., Zhang, B., Li, S., Wang, Z., Liu, H., et al. (2022a).
Characterization of neuroendocrine regulation- and metabolism-associated
molecular features and prognostic indicators with aid to clinical chemotherapy and
immunotherapy of patients with pancreatic cancer. Front. Endocrinol. 13, 1078424.
doi:10.3389/fendo.2022.1078424

Zhang, H., Zhai, X., Liu, Y., Xia, Z., Xia, T., Du, G., et al. (2023d). NOP2-mediated
m5C modification of c-myc in an eif3a-dependent manner to reprogram glucose
metabolism and promote hepatocellular carcinoma progression. Res. Wash. D.C.) 6,
0184. doi:10.34133/research.0184

Zhang, J., Peng, G., Chi, H., Yang, J., Xie, X., Song, G., et al. (2023a). CD8 + T-cell
marker genes reveal different immune subtypes of oral lichen planus by integrating
single-cell RNA-seq and bulk RNA-sequencing. BMC oral health 23, 464. doi:10.1186/
s12903-023-03138-0

Zhang, P., Pei, S., Gong, Z., Ren, Q., Xie, J., Liu, H., et al. (2023c). The integrated
single-cell analysis developed a lactate metabolism-driven signature to improve

outcomes and immunotherapy in lung adenocarcinoma. Front. Endocrinol. 14,
1154410. doi:10.3389/fendo.2023.1154410

Zhang, P., Pei, S., Liu, J., Zhang, X., Feng, Y., Gong, Z., et al. (2022b). Cuproptosis-
related lncRNA signatures: predicting prognosis and evaluating the tumor immune
microenvironment in lung adenocarcinoma. Front. Oncol. 12, 1088931. doi:10.3389/
fonc.2022.1088931

Zhang, Y., Jin, W., Chen, J., Wei, S., Cai, W., Zhong, Y., et al. (2023b). Gastrodin
alleviates rat chondrocyte senescence and mitochondrial dysfunction through Sirt3. Int.
Immunopharmacol. 118, 110022. doi:10.1016/j.intimp.2023.110022

Zhao, C., Shi, W., and Chen, M. (2022c). Long non-coding RNA BBOX1-antisense
RNA 1 enhances cell proliferation and migration and suppresses apoptosis in oral
squamous cell carcinoma via the miR-3940-3p/laminin subunit gamma 2 axis.
Bioengineered 13, 11138–11153. doi:10.1080/21655979.2022.2059982

Zhao, S., Chi, H., Ji, W., He, Q., Lai, G., Peng, G., et al. (2022b). A bioinformatics-
based analysis of an anoikis-related gene signature predicts the prognosis of patients
with low-grade gliomas. Brain Sci. 12, 1349. doi:10.3390/brainsci12101349

Zhao, S., Zhang, L., Ji, W., Shi, Y., Lai, G., Chi, H., et al. (2022a). Machine learning-
based characterization of cuprotosis-related biomarkers and immune infiltration in
Parkinson’s disease. Front. Genet. 13, 1010361. doi:10.3389/fgene.2022.1010361

Zhao, Y., Wei, K., Chi, H., Xia, Z., and Li, X. (2022d). IL-7: A promising adjuvant
ensuring effective T cell responses and memory in combination with cancer vaccines?
Front. Immunol. 13, 1022808. doi:10.3389/fimmu.2022.1022808

Zhao, Z., Ding, Y., Tran, L. J., Chai, G., and Lin, L. (2023). Innovative breakthroughs
facilitated by single-cell multi-omics: manipulating natural killer cell functionality
correlates with a novel subcategory of melanoma cells. Front. Immunol. 14,
1196892. doi:10.3389/fimmu.2023.1196892

Zhong, Y., Zhang, Y., Wei, S., Chen, J., Zhong, C., Cai, W., et al. (2022). Dissecting the
effect of sphingolipid metabolism gene in progression and microenvironment of
osteosarcoma to develop a prognostic signature. Front. Endocrinol. 13, 1030655.
doi:10.3389/fendo.2022.1030655

Frontiers in Molecular Biosciences frontiersin.org18

Zhang et al. 10.3389/fmolb.2023.1275897

https://doi.org/10.1007/s10142-023-01158-1
https://doi.org/10.7150/jca.76050
https://doi.org/10.3389/fimmu.2023.1188760
https://doi.org/10.3390/cancers14051255
https://doi.org/10.3390/cancers14051255
https://doi.org/10.1016/j.gendis.2022.10.021
https://doi.org/10.3389/fendo.2022.1078424
https://doi.org/10.34133/research.0184
https://doi.org/10.1186/s12903-023-03138-0
https://doi.org/10.1186/s12903-023-03138-0
https://doi.org/10.3389/fendo.2023.1154410
https://doi.org/10.3389/fonc.2022.1088931
https://doi.org/10.3389/fonc.2022.1088931
https://doi.org/10.1016/j.intimp.2023.110022
https://doi.org/10.1080/21655979.2022.2059982
https://doi.org/10.3390/brainsci12101349
https://doi.org/10.3389/fgene.2022.1010361
https://doi.org/10.3389/fimmu.2022.1022808
https://doi.org/10.3389/fimmu.2023.1196892
https://doi.org/10.3389/fendo.2022.1030655
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1275897

	Uncovering the immune microenvironment and molecular subtypes of hepatitis B-related liver cirrhosis and developing stable  ...
	1 Introduction
	2 Materials and methods
	2.1 Acquisition and processing of gene expression data
	2.2 Screening and enrichment analysis of differential genes
	2.3 Construction of gene co-expression networks
	2.4 Identify candidate genes and perform functional enrichment analysis
	2.5 Machine learning screens for diagnostic biomarkers
	2.6 Construction and validation of diagnostic models
	2.7 Functional analysis of ssGSEA hallmark gene set
	2.8 Consensus clustering of diseases
	2.9 Gene set variance analysis (GSVA)
	2.10 Immune infiltration analysis
	2.11 Statistical analysis

	3 Results
	3.1 Identification of DEGs
	3.2 WGCNA establishes gene co-expression network
	3.3 Identification of candidate genes and functional enrichment analysis
	3.4 Machine learning screens for diagnostic biomarkers
	3.5 Construction of diagnostic models, validation and construction of column line graphs
	3.6 Differential expression of feature genes
	3.7 Single-gene GSEA analysis of feature genes and functional analysis of ssGSEA hallmark gene set
	3.8 Consensus clustering of HBV-LC by feature genes
	3.9 Immune infiltration analysis of two subtypes of HBV-LC

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


