1,665 research outputs found
Site-directed mutation of a laccase from Thermus thermophilus: Effect on the activity profile
A site-directed mutant R453T of a laccase from Thermus thermophilus HB27 (Tth-laccase) was constructed in order to investigate the effect on laccase catalytic properties. The mutated gene was cloned and overexpressed in Escherichia coli. Nickel-affinity purification was achieved and followed by copper ion incorporation. The mature mutated enzyme was quantitatively equal to the wild type. A photometric assay based on the oxidation of the substrate 2,2-azino-bis-(3- ethylbenzthiazoline-6-sulfonate) (ABTS) was employed in comparison with the wild-type Tth-laccase on catalytic properties. The R453T mutant exhibited improvement in substrate affinity and specific activity at room temperature, whereas those parameters were not significantly influenced when the temperature increased up to 65°C or higher. The mutant had better catalytic activity than that of the wild type at acidic pH. Investigated by circular dichroism spectroscopy, the mutant Tth-laccase displayed similar profiles at low and high temperatures
Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration
The thromboxane A2 receptor (TP) has been implicated in restenosis after vascular injury, which induces vascular smooth muscle cell (VSMC) migration and proliferation. However, the mechanism for this process is largely unknown. In this study, we report that TP signaling induces VSMC migration and proliferation through activating YAP/TAZ, two major downstream effectors of the Hippo signaling pathway. The TP-specific agonists [1S-[1α,2α(Z),3β(1E,3S*),4 α]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (I-BOP) and 9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U-46619) induce YAP/TAZ activation in multiple cell lines, including VSMCs. YAP/TAZ activation induced by I-BOP is blocked by knockout of the receptor TP or knockdown of the downstream G proteins Gα12/13. Moreover, Rho inhibition or actin cytoskeleton disruption prevents I-BOP-induced YAP/TAZ activation. Importantly, TP activation promotes DNA synthesis and cell migration in VSMCs in a manner dependent on YAP/TAZ. Taken together, thromboxane A2 signaling activates YAP/TAZ to promote VSMC migration and proliferation, indicating YAP/TAZ as potential therapeutic targets for cardiovascular diseases
Optimal decisions of countries with carbon tax and carbon tariff
Purpose: Reducing carbon emission has been the core problem of controlling global warming
and climate deterioration recently. This paper focuses on the optimal carbon taxation policy
levied by countries and the impact on firms’ optimal production decisions.
Design/methodology/approach: This paper uses a two-stage game theory model to analyze
the impact of carbon tariff and tax. Numerical simulation is used to supplement the theoretical
analysis.
Findings: Results derived from the paper indicate that the demand in an unstable market is
significantly affected by environmental damage level. Carbon tariff is a policy-oriented tax while
the carbon tax is a market-oriented one. Comprehensive carbon taxation policy benefit
developed countries and basic policy is more suitable for developing countries.
Research limitations/implications: In this research, we do not consider random demand and
asymmetric information, which may not well suited the reality.
Originality/value: This work provides a different perspective in analyzing the impact of
carbon tax and tariff. It is the first study to consider two consuming market and the strategic game between two countries. Different international status of countries considered in the paper
is also a unique point.Peer Reviewe
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption
Simultaneous measurement of displacement and temperature based on two cascaded balloon-like bent fibre structures
A low-cost optical fibre sensor based on two cascaded balloon-like bent fibre (BBF) structures for simultaneous displacement and temperature measurement is reported. The sensor is fabricated by cascading two balloon-like bent single-mode fibres (SMFs) which with different bending radii, generating two separate interference dips within a limited wavelength range. The wavelength of the two interference dips exhibits different responses to external displacement and temperature variations, hence simultaneous measurement of displacement and temperature is realized. Experimental results show that the proposed optical fibre sensor achieves a displacement sensitivity of −318.8 pm/μm and a temperature sensitivity of 47.4 pm/°C. Taking advantage of its low-cost, ease of fabrication, and experimentally determined high sensitivity, the sensor in this investigation can be potentially applied in both displacement and temperature measurement fields
The role of c-reactive protein and fibrinogen in the development of intracerebral hemorrhage: A mendelian randomization study in European population
Background: The causal association of C-reactive protein (CRP) and fibrinogen on intracerebral hemorrhage (ICH) remains uncertain. We investigated the causal associations of CRP and fibrinogen with ICH using two-sample Mendelian randomization. Method: We used single-nucleotide polymorphisms associated with CRP and fibrinogen as instrumental variables. The summary data on ICH were obtained from the International Stroke Genetics Consortium (1,545 cases and 1,481 controls). Two-sample Mendelian randomization estimates were performed to assess with inverse-variance weighted and sensitive analyses methods including the weighted median, the penalized weighted median, pleiotropy residual sum and outlier (MR-PRESSO) approaches. MR-Egger regression was used to explore the pleiotropy. Results: The MR analyses indicated that genetically predicted CRP concentration was not associated with ICH, with an odds ratio (OR) of 1.263 (95% CI = 0.935–1.704, p = 0.127). Besides, genetically predicted fibrinogen concentration was not associated with an increased risk of ICH, with an OR of 0.879 (95% CI = 0.060–18.281; p = 0.933). No evidence of pleiotropic bias was detected by MR-Egger. The findings were overall robust in sensitivity analyses. Conclusions: Our findings did not support that CRP and fibrinogen are causally associated with the risk of ICH
- …