33 research outputs found

    Ellipticity-dependent sequential over-barrier ionization of cold rubidium

    Get PDF
    We perform high-resolution measurements of momentum distribution on Rbn+^{n+} recoil ions up to charge state n=4n=4, where laser-cooled rubidium atoms are ionized by femtosecond elliptically polarized lasers with the pulse duration of 35 fs and the intensity of 3.3×\times1015^{15} W/cm2^2 in the over-barrier ionization (OBI) regime. The momentum distributions of the recoil ions are found to exhibit multi-band structures as the ellipticity varies from the linear to circular polarizations. The origin of these band structures can be explained quantitatively by the classical OBI model and dedicated classical trajectory Monte Carlo simulations with Heisenberg potential. Specifically, with back analysis of the classical trajectories, we reveal the ionization time and the OBI geometry of the sequentially released electrons, disentangling the mechanisms behind the tilted angle of the band structures. These results indicate that the classical treatment can describe the strong-field multiple ionization processes of alkali atoms

    Transition from tunneling leakage current to molecular tunneling in single-molecule junctions

    Get PDF
    数十年来,半导体工业一直遵循基于“摩尔定律”所设定的发展蓝图,逐步提升集成电路芯片上晶体管的集成度和运行速度,减小器件尺寸。为探索这一尺寸极限,课题组基于机械可控裂结技术自主开发了具有飞安级电学测量和亚纳米级位移控制灵敏度的科学仪器,在国际上首次获取了一系列具有不同重复单元的寡聚苯乙炔类分子电导随电极间距的演变关系,并发现随着电极间距的缩小,器件电输运由通过分子器件电流占主导逐步转变到由隧穿漏电流占主导。对于本研究中具有最小尺寸的寡聚苯乙炔分子器件,其由于隧穿漏电流所制约的尺寸极限可小至0.66 nm,预示了有机分子器件在未来电子器件小型化方面具有重要的应用潜力。 这一研究工作是在化学化工学院洪文晶教授、萨本栋微纳研究院杨扬助理教授以及英国Durham University的MartinR. Bryce教授共同指导下完成的。能源材料化学协同创新中心iChEM Fellow刘俊扬博士为论文第一作者,博士研究生郑珏婷、李瑞豪和硕士研究生黄晓艳、唐永翔、皮九婵、本科生王飞等参与了研究工作。田中群教授、毛秉伟教授和师佳副教授为论文工作提供了重要指导。【Abstract】The tunneling leakage current will be a major quantum obstacle during miniaturization in the semiconductor industry down to the scale of several nanometers. At this scale, to promote charge transport and overcome the tunneling leakage current between the source and drain terminals, molecular electronic junctions offer opportunities by inserting molecules between these two electrodes. Employing a series of oligo(aryleneethynylene) (OAE) molecules, here we investigate the transition from tunneling leakage current to molecular tunneling in the single-molecule devices using mechanically controllable break junction (MCBJ) technique, and the transition distances of the OAE molecular junctions were determined and even down to 0.66 nm for OAE2 molecular junction, which demonstrates that the intrinsic charge transport properties of a single-molecule device can be outstripped from the tunneling leakage current. Consequently, molecular electronic devices show the potential to push the ultimate limit of miniaturization to the scale of several angstroms.This work was supported by the National Key R&D Program of China (2017YFA0204902). This work was also generously supported by the Young Thousand Talent Project of China, the EC FP7 ITN “MOLESCO” project number 606728, the National Natural Science Foundation of China (nos. 21703188, 21673195, 21503179), and the China Postdoctoral Science Foundation (2017M622060). 该工作获得科技部国家重点研发计划课题(2017YFA0204902),国家自然科学基金委(21673195、21703188、21503179)以及中国博士后科学基金(2017M622060)等项目的资助,也得到了固体表面物理化学国家重点实验室、能源材料化学协同创新中心的支持

    Electric-field-induced selective catalysis of single-molecule reaction

    Get PDF
    随着单分子电学检测技术的迅速发展,分子电子学的研究不再局限于分子电子学器件的构筑及其电学性质的测量,而且扩展到单分子尺度化学反应过程的探索。然而目前相关的研究仍然局限于理论计算方面,在单分子尺度上实时监测和调控化学反应的活性和选择性是化学领域的长期目标和挑战。针对这一挑战,洪文晶教授课题组与程俊教授课题组合作,自主研发了精密科学仪器,将单个有机分子定向连接在两个末端尺寸为原子级的电极之间,解决了化学反应中分子取向控制的问题.理论计算结果证实了定向电场可以有效地稳定化学反应的过渡态,从而降低反应能垒。该研究工作在化学化工学院洪文晶教授、程俊教授、能源材料化学协同创新中心(iChEM)刘俊扬副研究员的共同指导下完成,由硕士研究生黄晓艳、iChEM博士研究生唐淳、博士研究生李洁琼以及兰州大学的陈力川博士作为共同第一作者,化学化工学院师佳副教授、陈招斌高级工程师、夏海平教授和田中群教授,萨本栋微纳研究院杨扬副教授、环境与生态学院白敏冬教授以及兰州大学张浩力教授参与了研究工作的讨论并给予指导,博士后乐家波、博士研究生郑珏婷、张佩(已毕业)、李瑞豪、李晓慧也参与了研究工作。Oriented external electric fields (OEEFs) offer a unique chance to tune catalytic selectivity by orienting the alignment of the electric field along the axis of the activated bond for a specific chemical reaction; however, they remain a key experimental challenge. Here, we experimentally and theoretically investigated the OEEF-induced selective catalysis in a two-step cascade reaction of the Diels-Alder addition followed by an aromatization process. Characterized by the mechanically controllable break junction (MCBJ) technique in the nanogap and confirmed by nuclear magnetic resonance (NMR) in bottles, OEEFs are found to selectively catalyze the aromatization reaction by one order of magnitude owing to the alignment of the electric field on the reaction axis. Meanwhile, the Diels-Alder reaction remained unchanged since its reaction axis is orthogonal to the electric fields. This orientation-selective catalytic effect of OEEFs reveals that chemical reactions can be selectively manipulated through the elegant alignment between the electric fields and the reaction axis.This work was supported by the National Key R&D Program of China (2017YFA0204902), the National Natural Science Foundation of China (21722305, 21703188, 21673195, 21621091, 51733004, 51525303, and 91745103), the China Postdoctoral Science Foundation (2017M622060), and the Young Thousand Talents Project of China. 该工作得到国家自然科学基金委(21722305、21703188、21673195、51733004、51525303、91745103),国家重点研发计划课题(2017YFA0204902),中国博士后面上基金(2017M622060)的资助,以及固体表面物理化学国家重点实验室、醇醚酯化工清洁生产国家工程实验室、能源材料化学协同创新中心的支持

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    The Janus-faced role of Piezo1 in cardiovascular health under mechanical stimulation

    No full text
    In recent years, cardiovascular health problems are becoming more and more serious. At the same time, mechanical stimulation closely relates to cardiovascular health. In this context, Piezo1, which is very sensitive to mechanical stimulation, has attracted our attention. Here, we review the critical significance of Piezo1 in mechanical stimulation of endothelial cells, NO production, lipid metabolism, DNA damage protection, the development of new blood vessels and maturation, narrowing of blood vessels, blood pressure regulation, vascular permeability, insulin sensitivity, and maintenance of red blood cell function. Besides, Piezo1 may participate in the occurrence and development of atherosclerosis, diabetes, hypertension, and other cardiovascular diseases. It is worth noting that Piezo1 has dual effects on maintaining cardiovascular health. On the one hand, the function of Piezo1 is necessary to maintain cardiovascular health; on the other hand, under some extreme mechanical stimulation, the overexpression of Piezo1 may bring adverse factors such as inflammation. Therefore, this review discusses the Janus-faced role of Piezo1 in maintaining cardiovascular health and puts forward new ideas to provide references for gene therapy or nanoagents targeting Piezo1

    Adenovirus-associated anti-miRNA-214 regulates bone metabolism and prevents local osteoporosis in rats

    Get PDF
    Objective: We investigated the expression of miRNA-214 in human osteoporotic bone tissue and tested the utility of adeno-associated virus (AAV) expressing a miRNA-214 inhibitor in terms of preventing local osteoporosis of the femoral condyle in a rat model of osteoporosis.Methods: (1) Femoral heads of patients who underwent hip replacements at our hospital because of femoral neck fractures were collected and divided into osteoporosis and non-osteoporosis groups based on preoperative bone mineral density data. MiRNA-214 expression was detected in bone tissues exhibiting obvious bone microstructural changes in the two groups. (2) A total of 144 SD female rats were divided into four groups: the Control, Model, Negative control (Model + AAV), and Experimental (Model + anti-miRNA-214) groups. AAV-anti-miRNA-214 was injected locally into the rat femoral condyles; we explored whether this prevented or treated local osteoporosis.Results: (1) MiRNA-214 expression in the human femoral head was significantly increased in the osteoporosis group. (2) Compared to the Model and Model + AAV groups, the bone mineral density (BMD) and femoral condyle bone volume/tissue volume (BV/TV) ratio in the Model + anti-miRNA-214 group were significantly higher; in addition, the number (TB.N) and thickness (TB.Th) of the trabecular bones were increased (all p < 0.05). MiRNA-214 expression in the femoral condyles of the Model + anti-miRNA-214 group was significantly higher than that in the other groups. The expression levels of the osteogenesis-related genes Alp, Bglap, and Col1α1 increased, while those of the osteoclast-related genes NFATc1, Acp5, Ctsk, Mmp9, and Clcn7 decreased.Conclusion: AAV-anti-miRNA-214 promoted osteoblast activity and inhibited osteoclast activity in the femoral condyles of osteoporotic rats, improving bone metabolism and slowing osteoporosis progression
    corecore