43 research outputs found

    Electrically conductive polyester and cellulose based composites: fabrication, characterization and in vitro biocompatibility

    No full text
    10.1080/00405000.2017.1423002The Journal of The Textile Institute10991238-124

    Kinematic numerators from the worldsheet : cubic trees from labelled trees

    No full text
    In this note we revisit the problem of explicitly computing tree-level scattering amplitudes in various theories in any dimension from worldsheet formulas. The latter are known to produce cubic-tree expansion of tree amplitudes with kinematic numerators automatically satisfying Jacobi-identities, once any half-integrand on the worldsheet is reduced to logarithmic functions. We review a natural class of worldsheet functions called "Cayley functions", which are in one-to-one correspondence with labelled trees, and natural expansions of known half-integrands onto them with coefficients that are particularly compact building blocks of kinematic numerators. We present a general formula expressing kinematic numerators of all cubic trees as linear combinations of coefficients of labelled trees, which satisfy Jacobi identities by construction and include the usual combinations in terms of master numerators as a special case. Our results provide an efficient algorithm, which is implemented in a MATHEMATICA package, for computing all tree amplitudes in theories including non-linear sigma model, special Galileon, Yang-Mills-scalar, Einstein-Yang-Mills and Dirac-Born-Infeld

    Dietary Dihydroartemisinin Supplementation Attenuates Hepatic Oxidative Damage of Weaned Piglets with Intrauterine Growth Retardation through the Nrf2/ARE Signaling Pathway

    No full text
    The object of present study was to evaluate the effects of dihydroartemisinin (DHA) supplementation on the hepatic antioxidant capacity in IUGR-affected weaned piglets. Eight piglets with normal birth weight (NBW) and sixteen IUGR-affected piglets were selected. Piglets were weaned at 21 days. NBW and IUGR groups were fed a basal diet and the ID group was fed the basal diet supplemented with 80 mg/kg DHA for 28 days. The result indicated that compared with NBW piglets, IUGR-affected piglets increased (p < 0.05) the concentration of malondialdehyde (MDA) and decreased (p < 0.05) the serum activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). In addition, IUGR-affected piglets showed increased (p < 0.05) hepatic concentrations of protein carbonyl (PC), 8-hydroxy-2’-deoxyguanosine (8-OHdG), and oxidized glutathione (GSSG), and an increased GSSG:GSH value. IUGR-affected piglets exhibited lower (p < 0.05) activities of GSH-Px, T-SOD, total antioxidant capacity (T-AOC), and the concentration of glutathione (GSH). DHA supplementation decreased (p < 0.05) the serum concentration of MDA and increased the serum activities of T-AOC, T-SOD, GSH-Px, and CAT. The ID group showed decreased (p < 0.05) concentrations of MDA, PC, 8-OHdG, and GSSG, and a decreased GSSG:GSH value in the liver. The hepatic activity of T-SOD and the concentration of GSH were increased (p < 0.05) in the liver of ID group. IUGR-affected piglets downregulated (p < 0.05) mRNA expression of nuclear erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and CAT. DHA supplementation increased (p < 0.05) mRNA expression of Nrf2, HO-1, GPx1, and CAT in the ID group. In addition, the protein expression of Nrf2 was downregulated (p < 0.05) in the liver of IUGR-affected piglets and DHA supplementation increased (p < 0.05) the protein content of Nrf2 and HO-1. In conclusion, DHA may be beneficial in alleviating oxidative damage induced by IUGR through the Nrf2/ARE signaling pathway in the liver

    Ho:YAG laser at 2097 nm pumped by a narrow linewidth tunable 1.91 μm laser

    No full text
    Abstract This study presents a high efficiency Ho:YAG laser based on a narrow linewidth tunable 1.91 μm laser. A tunable Tm:YLF laser is the pump source and the wavelength continuous tunability ranges from 1906.04 to 1908.83 nm, corresponding to a linewidth of less than 0.41 nm. The tunable Tm:YLF laser is achieved by changing the operating temperature of the VBG. The output power of the Ho:YAG laser is between 21.04 and 23.53 W and the slope efficiency is between 64.08 and 68.26% at the pump power of 39.8 W. The output power and slope efficiency corresponding to the pump wavelength of 1907.36 nm are 23.53 W and 68.26%, respectively. This study illustrates that fine-tuning the pump wavelength is an effective way to improve the slope efficiency and output power of the Ho:YAG laser at room temperature

    Effect of diet supplemented with enzymatically treated Artemisia annua L. on intestinal digestive function and immunity in weaned pigs

    No full text
    The present experiment was conducted to evaluate the effect of enzymatically treated Artemisia annua L. (EA) on intestinal digestive function and immune capacity in weaned pigs. Firstly, a total of 300 21-day-old piglets were randomly allotted to five groups, including CON, EA1, EA2, EA3, and EA4 groups (basal diet supplemented with 0, 0.5, 1, 2, 4 g/kg EA, respectively). At 50 days of age, the results showed that pigs in the EA3 group presented significant improvements (p < .05) of growth performance and health status when compared with those of the CON group. According to the results above, we considered 2 g/kg EA as the optimal dose for pig diets. Therefore, we selected 12 pigs from the CON and EA3 groups (n = 6) at 51 days of age for further investigation in vivo. Compared with the CON group, EA3 group significantly increased (p < .05) small intestinal length of pigs, enhanced (p < .05) the activities of amylase, trypsin and Na+-K+-ATPase and the concentrations of glucose transporter in both jejunum and ileum. EA3 group had lower (p < .05) concentrations of interleukin 1β, interleukin 6 and tumour necrosis factor α in the jejunum and higher (p < .05) concentrations of interleukin 10, secretory immunoglobulin A and immunoglobulin G in the ileum of pigs than the CON group. These results demonstrated that EA provided a dietary nutritional means to improve intestinal function of weaned pigs and 2 g/kg was the optimal dose for weaned pigs in the present study

    Effect of Curcumin on Growth Performance, Inflammation, Insulin level, and Lipid Metabolism in Weaned Piglets with IUGR

    No full text
    The possible causes of intrauterine growth retardation (IUGR) might stem from placental insufficiency, maternal malnutrition, inflammation in utero, and other causes. IUGR has had an adverse influence on human health and animal production. Forty weaned piglets with normal birth weights (NBWs) or IUGR were randomly divided into four treatments groups: NBW, NC (NBW with curcumin supplementation), IUGR, and IC (IUGR with curcumin supplementation) from 26 to 50 d. Levels of cytokines, glucose, and lipid metabolism were evaluated. IUGR piglets showed slow growth during the experiment. Piglets with IUGR showed higher levels of serum pro-inflammatory cytokines, insulin resistance, and hepatic lipid accumulation. Curcumin supplementation reduced the production of serum pro-inflammatory cytokines, attenuated insulin resistance and hepatic triglyceride, and enhanced the hepatic glycogen concentrations and lipase activities of IUGR piglets. The hepatic mRNA expressions of the insulin-signaling pathway and lipogenic pathway were influenced by IUGR and were positively attenuated by diets supplemented with curcumin. In conclusion, IUGR caused slow growth, insulin resistance, and increased hepatic lipid levels. Diets supplemented with curcumin improved growth, attenuated insulin resistance, and reduced lipid levels in the liver by regulating the hepatic gene expressions of the related signaling pathway in IUGR piglets

    Constructing a Quasi-Liquid Interphase to Enable Highly Stable Zn-Metal Anode

    No full text
    Rechargeable aqueous Zn-metal batteries have attracted widespread attention owing to their safety and low cost beyond Li-metal batteries. However, due to the lack of the solid electrolyte interphase, problems such as dendrites, side reactions and hydrogen generation severely restrict their commercial applications. Herein, a quasi-liquid interphase (QLI) with a “solid–liquid” property is constructed to stabilize the Zn-metal anode. The synergistic effect of solid and liquid behavior ensures the stable existence of QLI and simultaneously enables the interphase dynamic and self-adaptive to the anode evolution. Electrolyte erosion, Zn2+ diffusion and side reactions are inhibited during long-term cycling after introducing QLI, significantly improving the cycling stability and capacity retention of the symmetric and full cells modified with QLI (Zn@QLI), respectively. Constructing an interphase with a quasi-liquid state represents a promising strategy to stabilize the metal anodes in aqueous electrolytes and even extend to organic electrolytes

    Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation.

    No full text
    Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P < 0.05) concentrations of insulin in the serum, higher (P < 0.05) HOMA-IR and total cholesterol, triglycerides (TG), non-esterified fatty acid (NEFA) in the liver, and lower (P < 0.05) enzyme activities (hepatic lipase [HL], lipoprotein lipase [LPL], total lipase [TL]) and concentration of glycogen in the liver than the NBW group. TB supplementation decreased (P < 0.05) the concentrations of insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P < 0.05) enzyme activities (HL, LPL, and TL) and concentration of glycogen in the liver of the IT group. The mRNA expression for insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P < 0.05) affected in the liver by IUGR, which was efficiently (P < 0.05) attenuated by diets supplemented with TB. TB supplementation has therapeutic potential for attenuating insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets

    DNA Methylation of miR-122 Aggravates Oxidative Stress in Colitis Targeting SELENBP1 Partially by p65NF-κB Signaling

    No full text
    Aberrant microRNA (miRNA) expressions contribute to the development and progression of various diseases, including Crohn’s disease (CD). However, the accurate mechanisms of miRNAs in CD are definitely unclear. We employed colonic tissue samples from normal volunteers and CD patients, an acute mice colitis model induced by 2,4,6-trinitro-benzene-sulfonic acid (TNBS), and a cellular oxidative stress model induced by H2O2 in HT-29 cells to determine the effects of oxidative stress on expressions of miR-122, selenium-binding protein 1 (SELENBP1, SBP1), p65 nuclear factor κB (p65NF-κB) signaling, and DNA methylation. We found that SBP1 was mainly located on epithelial cells and was significantly increased in patients with active CD. SBP1 was the target gene of miR-122. miR-122 expression was downregulated while SBP1 expression was upregulated under TNBS-induced colitis or oxidative stress. Pre-miR-122 or siRNA SBP1 (si-SBP1) treatment ameliorated acute TNBS-induced colitis and H2O2-induced oxidative stress. Cotreatment of pre-miR-122 and si-SBP1 enhanced these effects. Besides, pre-miR-122 and si-SBP1 obviously activated the p65NF-κB signaling by phosphorylation of IκBα. Bisulfite sequencing of the CpG islands in the promoter region of miR-122 showed that CpG methylation was significantly increased under oxidative stress. Treating cells with 5′-AZA which was well known as a DNA-demethylating agent significantly increased miR-122 expression. Our results suggest that oxidative stress-induced DNA methylation of miR-122 aggravates colitis targeting SELENBP1 partially by p65NF-κB signaling and may promote the progression of CD
    corecore