108 research outputs found

    Galactic Archaeology with TESS: Prospects for Testing the Star Formation History in the Solar Neighbourhood

    Get PDF
    A period of quenching between the formation of the thick and thin disks of the Milky Way has been recently proposed to explain the observed age-[{\alpha}/Fe] distribution of stars in the solar neighbourhood. However, robust constraints on stellar ages are currently available for only a limited number of stars. The all-sky survey TESS (Transiting Exoplanet Survey Satellite) will observe the brightest stars in the sky and thus can be used to investigate the age distributions of stars in these components of the Galaxy via asteroseismology, where previously this has been difficult using other techniques. The aim of this preliminary study was to determine whether TESS will be able to provide evidence for quenching periods during the star formation history of the Milky Way. Using a population synthesis code, we produced populations based on various stellar formation history models and limited the analysis to red-giant-branch stars. We investigated the mass-Galactic-disk-height distributions, where stellar mass was used as an age proxy, to test for whether periods of quenching can be observed by TESS. We found that even with the addition of 15% noise to the inferred masses, it will be possible for TESS to find evidence for/against quenching periods suggested in the literature (e.g. between 7 and 9 Gyr ago), therefore providing stringent constraints on the formation and evolution of the Milky Way.Comment: 4 pages, 3 figures, proceedings of "Seismology of the Sun and the Distant Stars 2016", Mario J. P. F. G. Monteiro, Margarida S. Cunha, Joao Miguel T. Ferreira editor

    KOI-3890: A high mass-ratio asteroseismic red-giant++M-dwarf eclipsing binary undergoing heartbeat tidal interactions

    Get PDF
    KOI-3890 is a highly eccentric, 153-day period eclipsing, single-lined spectroscopic binary system containing a red-giant star showing solar-like oscillations alongside tidal interactions. The combination of transit photometry, radial velocity observations, and asteroseismology have enabled the detailed characterisation of both the red-giant primary and the M-dwarf companion, along with the tidal interaction and the geometry of the system. The stellar parameters of the red-giant primary are determined through the use of asteroseismology and grid-based modelling to give a mass and radius of M⋆=1.04±0.06  M⊙M_{\star}=1.04\pm0.06\;\textrm{M}_{\odot} and R⋆=5.8±0.2  R⊙R_{\star}=5.8\pm0.2\;\textrm{R}_{\odot} respectively. When combined with transit photometry the M-dwarf companion is found to have a mass and radius of Mc=0.23±0.01  M⊙M_{\mathrm{c}}=0.23\pm0.01\;\textrm{M}_{\odot} and Rc=0.256±0.007  R⊙R_{\mathrm{c}}=0.256\pm0.007\;\textrm{R}_{\odot}. Moreover, through asteroseismology we constrain the age of the system through the red-giant primary to be 9.1−1.7+2.4  Gyr9.1^{+2.4}_{-1.7}\;\mathrm{Gyr}. This provides a constraint on the age of the M-dwarf secondary, which is difficult to do for other M-dwarf binary systems. In addition, the asteroseismic analysis yields an estimate of the inclination angle of the rotation axis of the red-giant star of i=87.6−1.2+2.4i=87.6^{+2.4}_{-1.2} degrees. The obliquity of the system\textemdash the angle between the stellar rotation axis and the angle normal to the orbital plane\textemdash is also derived to give ψ=4.2−4.2+2.1\psi=4.2^{+2.1}_{-4.2} degrees showing that the system is consistent with alignment. We observe no radius inflation in the M-dwarf companion when compared to current low-mass stellar models.Comment: 11 pages, 5 figures, accepted for publication in MNRA

    What asteroseismology can do for exoplanets

    Full text link
    We describe three useful applications of asteroseismology in the context of exoplanet science: (1) the detailed characterisation of exoplanet host stars; (2) the measurement of stellar inclinations; and (3) the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 (Van Eylen et al. 2014). This is one of the brightest (V = 9.4) Kepler exoplanet host stars, containing a small (2.8 Rearth) transiting planet in a long orbit (17.8 days), and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42) was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.Comment: 4 pages, Proceedings of the CoRoT Symposium 3 / Kepler KASC-7 joint meeting, Toulouse, 7-11 July 2014. To be published by EPJ Web of Conference

    Bayesian hierarchical inference of asteroseismic inclination angles

    Get PDF
    The stellar inclination angle-the angle between the rotation axis of a star and our line of sight-provides valuable information in many different areas, from the characterisation of the geometry of exoplanetary and eclipsing binary systems, to the formation and evolution of those systems. We propose a method based on asteroseismology and a Bayesian hierarchical scheme for extracting the inclination angle of a single star. This hierarchical method therefore provides a means to both accurately and robustly extract inclination angles from red giant stars. We successfully apply this technique to an artificial dataset with an underlying isotropic inclination angle distribution to verify the method. We also apply this technique to 123 red giant stars observed with Kepler\textit{Kepler}. We also show the need for a selection function to account for possible population-level biases, that are not present in individual star-by-star cases, in order to extend the hierarchical method towards inferring underlying population inclination angle distributions.Comment: 20 pages, 12 figures, accepted for publication in MNRA
    • …
    corecore