38 research outputs found

    A Multiple Choices Reading Comprehension Corpus for Vietnamese Language Education

    Full text link
    Machine reading comprehension has been an interesting and challenging task in recent years, with the purpose of extracting useful information from texts. To attain the computer ability to understand the reading text and answer relevant information, we introduce ViMMRC 2.0 - an extension of the previous ViMMRC for the task of multiple-choice reading comprehension in Vietnamese Textbooks which contain the reading articles for students from Grade 1 to Grade 12. This dataset has 699 reading passages which are prose and poems, and 5,273 questions. The questions in the new dataset are not fixed with four options as in the previous version. Moreover, the difficulty of questions is increased, which challenges the models to find the correct choice. The computer must understand the whole context of the reading passage, the question, and the content of each choice to extract the right answers. Hence, we propose the multi-stage approach that combines the multi-step attention network (MAN) with the natural language inference (NLI) task to enhance the performance of the reading comprehension model. Then, we compare the proposed methodology with the baseline BERTology models on the new dataset and the ViMMRC 1.0. Our multi-stage models achieved 58.81% by Accuracy on the test set, which is 5.34% better than the highest BERTology models. From the results of the error analysis, we found the challenge of the reading comprehension models is understanding the implicit context in texts and linking them together in order to find the correct answers. Finally, we hope our new dataset will motivate further research in enhancing the language understanding ability of computers in the Vietnamese language

    Comparison Between Traditional Machine Learning Models And Neural Network Models For Vietnamese Hate Speech Detection

    Full text link
    Hate-speech detection on social network language has become one of the main researching fields recently due to the spreading of social networks like Facebook and Twitter. In Vietnam, the threat of offensive and harassment cause bad impacts for online user. The VLSP - Shared task about Hate Speech Detection on social networks showed many proposed approaches for detecting whatever comment is clean or not. However, this problem still needs further researching. Consequently, we compare traditional machine learning and deep learning on a large dataset about the user's comments on social network in Vietnamese and find out what is the advantage and disadvantage of each model by comparing their accuracy on F1-score, then we pick two models in which has highest accuracy in traditional machine learning models and deep neural models respectively. Next, we compare these two models capable of predicting the right label by referencing their confusion matrices and considering the advantages and disadvantages of each model. Finally, from the comparison result, we propose our ensemble method that concentrates the abilities of traditional methods and deep learning methods.Comment: Published in The 2020 RIVF International Conference on Computing and Communication Technologies (RIVF

    Lensing in the Blue. II. Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing

    Get PDF
    The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere's space-like conditions. SuperBIT's 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak-lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT's near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT's three bluest filters; the effect of lensing sample selections is also considered. We find that, in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT's capability for weak gravitational lensing measurements in the blue
    corecore