42 research outputs found
Intermittent chaotic chimeras for coupled rotators
Two symmetrically coupled populations of N oscillators with inertia
display chaotic solutions with broken symmetry similar to experimental
observations with mechanical pendula. In particular, we report the first
evidence of intermittent chaotic chimeras, where one population is synchronized
and the other jumps erratically between laminar and turbulent phases. These
states have finite life-times diverging as a power-law with N and m. Lyapunov
analyses reveal chaotic properties in quantitative agreement with theoretical
predictions for globally coupled dissipative systems.Comment: 6 pages, 5 figures SUbmitted to Physical Review E, as Rapid
Communicatio
Phase transitions during fruiting body formation in Myxococcus xanthus
The formation of a collectively moving group benefits individuals within a
population in a variety of ways such as ultra-sensitivity to perturbation,
collective modes of feeding, and protection from environmental stress. While
some collective groups use a single organizing principle, others can
dynamically shift the behavior of the group by modifying the interaction rules
at the individual level. The surface-dwelling bacterium Myxococcus xanthus
forms dynamic collective groups both to feed on prey and to aggregate during
times of starvation. The latter behavior, termed fruiting-body formation,
involves a complex, coordinated series of density changes that ultimately lead
to three-dimensional aggregates comprising hundreds of thousands of cells and
spores. This multi-step developmental process most likely involves several
different single-celled behaviors as the population condenses from a loose,
two-dimensional sheet to a three-dimensional mound. Here, we use
high-resolution microscopy and computer vision software to spatiotemporally
track the motion of thousands of individuals during the initial stages of
fruiting body formation. We find that a combination of cell-contact-mediated
alignment and internal timing mechanisms drive a phase transition from
exploratory flocking, in which cell groups move rapidly and coherently over
long distances, to a reversal-mediated localization into streams, which act as
slow-spreading, quasi-one-dimensional nematic fluids. These observations lead
us to an active liquid crystal description of the myxobacterial development
cycle.Comment: 16 pages, 5 figure
Robustness of compositional heredity to the growth and division dynamics of prebiotic compartments
An important transition after the origin of life was the first emergence of a
Darwinian population, self-reproducing entities exhibiting differential
reproduction, phenotypic variation, and inheritance of phenotypic traits. The
simplest system we can imagine to have these properties would consist of a
compartmentalized autocatalytic reaction system that exhibits two growth states
with different chemical compositions. Identifying the chemical composition as
the phenotype, this accounts for two of the properties. However, it is not
clear what are the necessary conditions for such a chemical system to exhibit
inheritance of the compositional states upon growth and division of the
compartment. We show that for a general class of autocatalytic chemical systems
subject to serial dilution, the inheritance of compositional information only
occurs when the time interval between dilutions is below a critical threshold
that depends on the efficiency of the catalytic reactions. Further, we show
that these thresholds provide rigorous bounds on the properties required for
the inheritance of the chemical compositional state for general growth and
division cycles. Our result suggests that a serial dilution experiment, which
is much easier to set up in a laboratory, can be used to test whether a given
autocatalytic chemical system can exhibit heredity. Lastly, we apply our
results to a realistic autocatalytic system based on the Azoarcus ribozyme and
suggest a protocol to experimentally test whether this system can exhibit
heredity.Comment: 30 pages, 22 figure
Modulation of Immune Responses by Particle Size and Shape
The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines
Whirligig beetles as corralled active Brownian particles
We study the collective dynamics of groups of whirligig beetles Dineutus discolor (Coleoptera: Gyrinidae) swimming freely on the surface of water. We extract individual trajectories for each beetle, including positions and orientations, and use this to discover (i) a density-dependent speed scaling like v ∼ ρ−ν with ν ≈ 0.4 over two orders of magnitude in density (ii) an inertial delay for velocity alignment of approximately 13 ms and (iii) coexisting high and low-density phases, consistent with motility-induced phase separation (MIPS). We modify a standard active Brownian particle (ABP) model to a corralled ABP (CABP) model that functions in open space by incorporating a density-dependent reorientation of the beetles, towards the cluster. We use our new model to test our hypothesis that an motility-induced phase separation (MIPS) (or a MIPS like effect) can explain the co-occurrence of high- and low-density phases we see in our data. The fitted model then successfully recovers a MIPS-like condensed phase for N = 200 and the absence of such a phase for smaller group sizes N = 50, 100
Irregular particle morphology and membrane rupture facilitate ion gradients in the lumen of phagosomes
Localized fluxes, production, and/or degradation coupled to limited diffusion are well known to result in stable spatial concentration gradients of biomolecules in the cell. In this study, we demonstrate that this also holds true for small ions, since we found that the close membrane apposition between the membrane of a phagosome and the surface of the cargo particle it encloses, together with localized membrane rupture, suffice for stable gradients of protons and iron cations within the lumen of the phagosome. Our data show that, in phagosomes containing hexapod-shaped silica colloid particles, the phagosomal membrane is ruptured at the positions of the tips of the rods, but not at other positions. This results in the confined leakage at these positions of protons and iron from the lumen of the phagosome into the cytosol. In contrast, acidification and iron accumulation still occur at the positions of the phagosomes nearer to the cores of the particles. Our study strengthens the concept that coupling metabolic and signaling reaction cascades can be spatially confined by localized limited diffusion